These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37770585)

  • 61. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective.
    Klimas A; Entcheva E
    J Biomed Opt; 2014 Aug; 19(8):080701. PubMed ID: 25117076
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optogenetic investigation of neuropsychiatric diseases.
    Huang F; Tang B; Jiang H
    Int J Neurosci; 2013 Jan; 123(1):7-16. PubMed ID: 23002710
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches.
    Klapper SD; Swiersy A; Bamberg E; Busskamp V
    Front Syst Neurosci; 2016; 10():74. PubMed ID: 27642278
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optogenetic and chemogenetic techniques for neurogastroenterology.
    Boesmans W; Hao MM; Vanden Berghe P
    Nat Rev Gastroenterol Hepatol; 2018 Jan; 15(1):21-38. PubMed ID: 29184183
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes.
    Gruber A; Edri O; Huber I; Arbel G; Gepstein A; Shiti A; Shaheen N; Chorna S; Landesberg M; Gepstein L
    JCI Insight; 2021 Jun; 6(11):. PubMed ID: 34100384
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tools, methods, and applications for optophysiology in neuroscience.
    Smedemark-Margulies N; Trapani JG
    Front Mol Neurosci; 2013; 6():18. PubMed ID: 23882179
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Long-term in vivo application of a potassium channel-based optogenetic silencer in the healthy and epileptic mouse hippocampus.
    Kleis P; Paschen E; Häussler U; Bernal Sierra YA; Haas CA
    BMC Biol; 2022 Jan; 20(1):18. PubMed ID: 35031048
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A high-speed, bright, red fluorescent voltage sensor to detect neural activity.
    Beck C; Gong Y
    Sci Rep; 2019 Nov; 9(1):15878. PubMed ID: 31685893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cardiac Optogenetics: Enhancement by All-trans-Retinal.
    Yu J; Chen K; Lucero RV; Ambrosi CM; Entcheva E
    Sci Rep; 2015 Nov; 5():16542. PubMed ID: 26568132
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber.
    Adelsberger H; Grienberger C; Stroh A; Konnerth A
    Cold Spring Harb Protoc; 2014 Oct; 2014(10):pdb.prot084145. PubMed ID: 25275110
    [TBL] [Abstract][Full Text] [Related]  

  • 72.
    Haq KT; Roberts A; Berk F; Allen S; Swift LM; Posnack NG
    bioRxiv; 2023 May; ():. PubMed ID: 37205349
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cardiac optogenetics: the next frontier.
    Gruber A; Edri O; Gepstein L
    Europace; 2018 Dec; 20(12):1910-1918. PubMed ID: 29315402
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical imaging of voltage and calcium in cardiac cells & tissues.
    Herron TJ; Lee P; Jalife J
    Circ Res; 2012 Feb; 110(4):609-23. PubMed ID: 22343556
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.
    Piao HH; Rajakumar D; Kang BE; Kim EH; Baker BJ
    J Neurosci; 2015 Jan; 35(1):372-85. PubMed ID: 25568129
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Large Scale Double-Path Illumination System with Split Field of View for the All-Optical Study of Inter-and Intra-Hemispheric Functional Connectivity on Mice.
    Conti E; Allegra Mascaro AL; Pavone FS
    Methods Protoc; 2019 Jan; 2(1):. PubMed ID: 31164593
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin.
    Hsiao PY; Tsai CL; Chen MC; Lin YY; Yang SD; Chiang AS
    Biomed Opt Express; 2015 Nov; 6(11):4344-52. PubMed ID: 26601000
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study.
    Jeong YM; Choi TI; Hwang KS; Lee JS; Gerlai R; Kim CH
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281244
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.