These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37770699)

  • 21. Novel nicotine oxidoreductase-encoding gene involved in nicotine degradation by Pseudomonas putida strain S16.
    Tang H; Wang L; Meng X; Ma L; Wang S; He X; Wu G; Xu P
    Appl Environ Microbiol; 2009 Feb; 75(3):772-8. PubMed ID: 19060159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16.
    Yu H; Tang H; Wang L; Yao Y; Wu G; Xu P
    J Bacteriol; 2011 Oct; 193(19):5541-2. PubMed ID: 21914868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Pseudooxynicotine Amine Oxidase of Pseudomonas putida S16 that Is Crucial for Nicotine Degradation.
    Hu H; Wang W; Tang H; Xu P
    Sci Rep; 2015 Dec; 5():17770. PubMed ID: 26634650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory Mechanism of Nicotine Degradation in
    Hu H; Wang L; Wang W; Wu G; Tao F; Xu P; Deng Z; Tang H
    mBio; 2019 Jun; 10(3):. PubMed ID: 31164460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An unusual repressor controls the expression of a crucial nicotine-degrading gene cluster in Pseudomonas putida S16.
    Wang L; Tang H; Yu H; Yao Y; Xu P
    Mol Microbiol; 2014 Mar; 91(6):1252-69. PubMed ID: 24471758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational Analysis of the Nicotine Oxidoreductase Mechanism by the ONIOM Method.
    Yildiz I
    ACS Omega; 2021 Aug; 6(34):22422-22428. PubMed ID: 34497931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the ModABC Molybdate Transport System of
    Xia Z; Lei L; Zhang HY; Wei HL
    Front Microbiol; 2018; 9():3030. PubMed ID: 30627117
    [No Abstract]   [Full Text] [Related]  

  • 28. A novel gene, encoding 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16.
    Tang H; Wang S; Ma L; Meng X; Deng Z; Zhang D; Ma C; Xu P
    Appl Environ Microbiol; 2008 Mar; 74(5):1567-74. PubMed ID: 18203859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide investigation of the genes involved in nicotine metabolism in Pseudomonas putida J5 by Tn5 transposon mutagenesis.
    Xia Z; Zhang W; Lei L; Liu X; Wei HL
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6503-14. PubMed ID: 25808517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation.
    Tang H; Yao Y; Wang L; Yu H; Ren Y; Wu G; Xu P
    Sci Rep; 2012; 2():377. PubMed ID: 22530095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel NADH-dependent and FAD-containing hydroxylase is crucial for nicotine degradation by Pseudomonas putida.
    Tang H; Yao Y; Zhang D; Meng X; Wang L; Yu H; Ma L; Xu P
    J Biol Chem; 2011 Nov; 286(45):39179-87. PubMed ID: 21949128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6.
    Hansen SK; Haagensen JA; Gjermansen M; Jørgensen TM; Tolker-Nielsen T; Molin S
    J Bacteriol; 2007 Jul; 189(13):4932-43. PubMed ID: 17468252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and Genome Analysis of a Nicotine and Nicotinic Acid-Degrading Strain Pseudomonas putida JQ581 Isolated from Marine.
    Li A; Qiu J; Chen D; Ye J; Wang Y; Tong L; Jiang J; Chen J
    Mar Drugs; 2017 May; 15(6):. PubMed ID: 28561771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase.
    Lin TY; Werther T; Jeoung JH; Dobbek H
    J Biol Chem; 2012 Nov; 287(45):38338-46. PubMed ID: 22992736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated organic-aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida.
    Ütkür FO; Thanh Tran T; Collins J; Brandenbusch C; Sadowski G; Schmid A; Bühler B
    J Ind Microbiol Biotechnol; 2012 Jul; 39(7):1049-59. PubMed ID: 22383177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic C-H Oxyfunctionalization: Coupling of Nitrate Reduction and Quinoline Hydroxylation in Recombinant Pseudomonas putida.
    Ütkür FÖ; Schmid A; Bühler B
    Biotechnol J; 2019 Aug; 14(8):e1800615. PubMed ID: 31144783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic and Metagenomic Insights into the Distribution of Nicotine-degrading Enzymes in Human Microbiota.
    Guan Y; Zhu Z; Peng Q; Li M; Li X; Yang JW; Lu YH; Wang M; Xie BB
    Curr Genomics; 2024 May; 25(3):226-235. PubMed ID: 39086996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates.
    Saleem-Batcha R; Teufel R
    Methods Enzymol; 2019; 620():349-363. PubMed ID: 31072493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.