These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37771410)

  • 1. Artificial Intelligence-Enabled Software Prototype to Inform Opioid Pharmacovigilance From Electronic Health Records: Development and Usability Study.
    Sorbello A; Haque SA; Hasan R; Jermyn R; Hussein A; Vega A; Zembrzuski K; Ripple A; Ahadpour M
    JMIR AI; 2023; 2():e45000. PubMed ID: 37771410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models.
    Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P
    JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing scientific literature reports for pharmacovigilance. Prototype software analytical tool development and usability testing.
    Sorbello A; Ripple A; Tonning J; Munoz M; Hasan R; Ly T; Francis H; Bodenreider O
    Appl Clin Inform; 2017 Mar; 8(1):291-305. PubMed ID: 28326432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning.
    Li F; Liu W; Yu H
    JMIR Med Inform; 2018 Nov; 6(4):e12159. PubMed ID: 30478023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.
    Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G
    J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deployment of Real-time Natural Language Processing and Deep Learning Clinical Decision Support in the Electronic Health Record: Pipeline Implementation for an Opioid Misuse Screener in Hospitalized Adults.
    Afshar M; Adelaine S; Resnik F; Mundt MP; Long J; Leaf M; Ampian T; Wills GJ; Schnapp B; Chao M; Brown R; Joyce C; Sharma B; Dligach D; Burnside ES; Mahoney J; Churpek MM; Patterson BW; Liao F
    JMIR Med Inform; 2023 Apr; 11():e44977. PubMed ID: 37079367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
    Sezgin E; Hussain SA; Rust S; Huang Y
    JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using artificial intelligence to identify patients with migraine and associated symptoms and conditions within electronic health records.
    Riskin D; Cady R; Shroff A; Hindiyeh NA; Smith T; Kymes S
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):121. PubMed ID: 37452338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying Characteristics of Opioid Use Disorder From Hospital Discharge Summaries Using Natural Language Processing.
    Poulsen MN; Freda PJ; Troiani V; Davoudi A; Mowery DL
    Front Public Health; 2022; 10():850619. PubMed ID: 35615042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foresight-a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study.
    Kraljevic Z; Bean D; Shek A; Bendayan R; Hemingway H; Yeung JA; Deng A; Baston A; Ross J; Idowu E; Teo JT; Dobson RJB
    Lancet Digit Health; 2024 Apr; 6(4):e281-e290. PubMed ID: 38519155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets.
    Li Y; Tao W; Li Z; Sun Z; Li F; Fenton S; Xu H; Tao C
    J Biomed Inform; 2024 Apr; 152():104621. PubMed ID: 38447600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study.
    Wang X; Hripcsak G; Markatou M; Friedman C
    J Am Med Inform Assoc; 2009; 16(3):328-37. PubMed ID: 19261932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RxBERT: Enhancing drug labeling text mining and analysis with AI language modeling.
    Wu L; Gray M; Dang O; Xu J; Fang H; Tong W
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1937-1943. PubMed ID: 38166420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review.
    Deimazar G; Sheikhtaheri A
    Int J Med Inform; 2023 Dec; 180():105246. PubMed ID: 37837710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records.
    Araki K; Matsumoto N; Togo K; Yonemoto N; Ohki E; Xu L; Hasegawa Y; Satoh D; Takemoto R; Miyazaki T
    Adv Ther; 2023 Mar; 40(3):934-950. PubMed ID: 36547809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques.
    Kim S; Kang T; Chung TK; Choi Y; Hong Y; Jung K; Lee H
    Drug Saf; 2023 Aug; 46(8):781-795. PubMed ID: 37330415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.