These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37771576)

  • 21. Easy efficient HDR-based targeted knock-in in
    Singh R; Chandel S; Ghosh A; Gautam A; Huson DH; Ravichandiran V; Ghosh D
    Bioengineered; 2022 Jun; 13(6):14857-14871. PubMed ID: 36602175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NOT Gates Based on Protein Degradation as a Case Study for a New Modular Modeling via SBML Level 3-Comp Package.
    Abraha BW; Marchisio MA
    Front Bioeng Biotechnol; 2022; 10():845240. PubMed ID: 35360404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
    Lebar T; Jerala R
    Methods Mol Biol; 2018; 1772():191-203. PubMed ID: 29754229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
    Liao B; Chen X; Zhou X; Zhou Y; Shi Y; Ye X; Liao M; Zhou Z; Cheng L; Ren B
    Arch Microbiol; 2021 Dec; 204(1):79. PubMed ID: 34954815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Type I-E CRISPR-Cas System as a Defense System in Saccharomyces cerevisiae.
    Bindal G; Amlinger L; Lundgren M; Rath D
    mSphere; 2022 Jun; 7(3):e0003822. PubMed ID: 35473305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas.
    Farzadfard F; Perli SD; Lu TK
    ACS Synth Biol; 2013 Oct; 2(10):604-13. PubMed ID: 23977949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-mediated protein-tagging signal amplification systems for efficient transcriptional activation and repression in Saccharomyces cerevisiae.
    Zhai H; Cui L; Xiong Z; Qi Q; Hou J
    Nucleic Acids Res; 2022 Jun; 50(10):5988-6000. PubMed ID: 35641106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells.
    Kim H; Bojar D; Fussenegger M
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7214-7219. PubMed ID: 30923122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boolean logic gates that use enzymes as input signals.
    Strack G; Pita M; Ornatska M; Katz E
    Chembiochem; 2008 May; 9(8):1260-6. PubMed ID: 18398883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Logic Synthesis of Recombinase-Based Genetic Circuits.
    Chiu TY; Jiang JR
    Sci Rep; 2017 Oct; 7(1):12873. PubMed ID: 28993615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae.
    Xiao H; Jeang KT
    J Biol Chem; 1998 Sep; 273(36):22873-6. PubMed ID: 9722505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in
    Machens F; Ran G; Ruehmkorff C; Meyer Auf der Heyde J; Mueller-Roeber B; Hochrein L
    ACS Synth Biol; 2023 Apr; 12(4):1046-1057. PubMed ID: 37014634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p.
    Pi H; Chien CT; Fields S
    Mol Cell Biol; 1997 Nov; 17(11):6410-8. PubMed ID: 9343403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in plant synthetic biology approaches to control expression of gene circuits.
    Koukara J; Papadopoulou KK
    Biochem Biophys Res Commun; 2023 Apr; 654():55-61. PubMed ID: 36889035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas-Mediated Tethering Recruits the Yeast
    Cliff ER; Kirkpatrick RL; Cunningham-Bryant D; Fernandez B; Harman JL; Zalatan JG
    ACS Synth Biol; 2021 Nov; 10(11):2870-2877. PubMed ID: 34723510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spacer2PAM: A computational framework to guide experimental determination of functional CRISPR-Cas system PAM sequences.
    Rybnicky GA; Fackler NA; Karim AS; Köpke M; Jewett MC
    Nucleic Acids Res; 2022 Apr; 50(6):3523-3534. PubMed ID: 35258601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.