BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37771632)

  • 21. Bioinformatic profiling identifies the glutaminase to be a potential novel cuproptosis-related biomarker for glioma.
    Ouyang Z; Zhang H; Lin W; Su J; Wang X
    Front Cell Dev Biol; 2022; 10():982439. PubMed ID: 36158220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer.
    Song S; Zhang M; Xie P; Wang S; Wang Y
    Front Immunol; 2022; 13():978909. PubMed ID: 36341328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LncRNAs signatures associated with cuproptosis predict the prognosis of endometrial cancer.
    Qi S; Feng H; Li X
    Front Genet; 2023; 14():1120089. PubMed ID: 37124623
    [No Abstract]   [Full Text] [Related]  

  • 24. Cuproptosis and Cuproptosis-Based Synergistic Therapy for Cancer Treatment.
    Shen Z; Qiu Y; Ding H; Ren F; Chen H
    ChemMedChem; 2024 Jun; ():e202400216. PubMed ID: 38943463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma.
    Yan C; Niu Y; Ma L; Tian L; Ma J
    J Transl Med; 2022 Oct; 20(1):452. PubMed ID: 36195876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of cuproptosis -related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in prostate cancer.
    Jin L; Mei W; Liu X; Sun X; Xin S; Zhou Z; Zhang J; Zhang B; Chen P; Cai M; Ye L
    Front Immunol; 2022; 13():974034. PubMed ID: 36203594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomics revealed the crosstalk between copper stress and cuproptosis, and explored the feasibility of curcumin as anticancer copper ionophore.
    Yang Y; Liang S; Geng H; Xiong M; Li M; Su Q; Jia F; Zhao Y; Wang K; Jiang J; Qin S; Li X
    Free Radic Biol Med; 2022 Nov; 193(Pt 2):638-647. PubMed ID: 36395954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cuproptosis: p53-regulated metabolic cell death?
    Xiong C; Ling H; Hao Q; Zhou X
    Cell Death Differ; 2023 Apr; 30(4):876-884. PubMed ID: 36755067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cuproptosis: emerging biomarkers and potential therapeutics in cancers.
    Wang M; Zheng L; Ma S; Lin R; Li J; Yang S
    Front Oncol; 2023; 13():1288504. PubMed ID: 38023234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor Microenvironment Responsive Hollow Nanoplatform for Triple Amplification of Oxidative Stress to Enhance Cuproptosis-Based Synergistic Cancer Therapy.
    Xu W; Wang Y; Hou G; Wang J; Wang T; Qian J; Suo A
    Adv Healthc Mater; 2023 May; 12(13):e2202949. PubMed ID: 36716523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisomycin has a potential toxicity of promoting cuproptosis in human ovarian cancer stem cells by attenuating YY1/lipoic acid pathway activation.
    Nie X; Chen H; Xiong Y; Chen J; Liu T
    J Cancer; 2022; 13(14):3503-3514. PubMed ID: 36484005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set.
    Liu H; Tang T
    Front Oncol; 2022; 12():952290. PubMed ID: 36276096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cuproptosis status affects treatment options about immunotherapy and targeted therapy for patients with kidney renal clear cell carcinoma.
    Zhang G; Chen X; Fang J; Tai P; Chen A; Cao K
    Front Immunol; 2022; 13():954440. PubMed ID: 36059510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Enzyme-Engineered Nonporous Copper(I) Coordination Polymer Nanoplatform for Cuproptosis-Based Synergistic Cancer Therapy.
    Xu Y; Liu SY; Zeng L; Ma H; Zhang Y; Yang H; Liu Y; Fang S; Zhao J; Xu Y; Ashby CR; He Y; Dai Z; Pan Y
    Adv Mater; 2022 Oct; 34(43):e2204733. PubMed ID: 36054475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of lipid metabolism on cuproptosis-inducing cancer therapy.
    Zhong Y; Zeng W; Chen Y; Zhu X
    Biomed Pharmacother; 2024 Mar; 172():116247. PubMed ID: 38330710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis.
    Cheng B; Tang C; Xie J; Zhou Q; Luo T; Wang Q; Huang H
    Life Sci; 2023 Jul; 325():121659. PubMed ID: 37011878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATF3/SPI1/SLC31A1 Signaling Promotes Cuproptosis Induced by Advanced Glycosylation End Products in Diabetic Myocardial Injury.
    Huo S; Wang Q; Shi W; Peng L; Jiang Y; Zhu M; Guo J; Peng D; Wang M; Men L; Huang B; Lv J; Lin L
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cuproptosis-Associated lncRNA Establishes New Prognostic Profile and Predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma.
    Xu S; Liu D; Chang T; Wen X; Ma S; Sun G; Wang L; Chen S; Xu Y; Zhang H
    Front Genet; 2022; 13():938259. PubMed ID: 35910212
    [No Abstract]   [Full Text] [Related]  

  • 39. Cuproptosis in lung cancer: mechanisms and therapeutic potential.
    Li Q; Wang T; Zhou Y; Shi J
    Mol Cell Biochem; 2023 Jul; ():. PubMed ID: 37480450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photothermally Triggered Copper Payload Release for Cuproptosis-Promoted Cancer Synergistic Therapy.
    Zhou J; Yu Q; Song J; Li S; Li XL; Kang BK; Chen HY; Xu JJ
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202213922. PubMed ID: 36585379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.