BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37771710)

  • 1. Dataset on modelling natural surfactant adsorption derived from non-edible seed oil (linseed oil) on sandstone reservoir rock.
    Awelewa K; Ogunkunle F; Olabode O; Oni B; Abraham D; Adeleye S; Ifeanyi S
    Data Brief; 2023 Oct; 50():109578. PubMed ID: 37771710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orange Mesocarp Extract as a Natural Surfactant: Impact on Fluid-Fluid and Fluid-Rock Interactions during Chemical Flooding.
    Obuebite AA; Okwonna OO; Eke WI; Akaranta O
    ACS Omega; 2024 Jan; 9(4):4263-4276. PubMed ID: 38313507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SDS-Aluminum Oxide Nanofluid for Enhanced Oil Recovery: IFT, Adsorption, and Oil Displacement Efficiency.
    Tavakkoli O; Kamyab H; Junin R; Ashokkumar V; Shariati A; Mohamed AM
    ACS Omega; 2022 Apr; 7(16):14022-14030. PubMed ID: 35559180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant-Nanoparticle-Brine Interaction: From Laboratory Experiments to Oil Field Application.
    Franco CA; Giraldo LJ; Candela CH; Bernal KM; Villamil F; Montes D; Lopera SH; Franco CA; Cortés FB
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32796762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Henna Extracts on Static and Dynamic Adsorption of Sodium Dodecyl Sulfate and Residual Oil Recovery from Quartz Sand.
    Mohd Musa MS; Gopalan PY; Yekeen N; Al-Yaseri A
    ACS Omega; 2023 Apr; 8(14):13118-13130. PubMed ID: 37065015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of the Synergistic Effect of Two Nonionic Surfactants on Interfacial Properties and Their Application in Enhanced Oil Recovery.
    Saw RK; Sinojiya D; Pillai P; Prakash S; Mandal A
    ACS Omega; 2023 Apr; 8(13):12445-12455. PubMed ID: 37033838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spotlight on the New Natural Surfactant Flooding in Carbonate Rock Samples in Low Salinity Condition.
    Ahmadi MA; Shadizadeh SR
    Sci Rep; 2018 Jul; 8(1):10985. PubMed ID: 30030463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of Surface Active Ionic Liquids on Different Rock Types under High Salinity Conditions.
    Nandwani SK; Chakraborty M; Gupta S
    Sci Rep; 2019 Oct; 9(1):14760. PubMed ID: 31611581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Novel Colloidal Silica Nanoparticles in the Reduction of Adsorption of Surfactant and Improvement of Oil Recovery Using Surfactant Polymer Flooding.
    Kesarwani H; Sharma S; Mandal A
    ACS Omega; 2021 May; 6(17):11327-11339. PubMed ID: 34056288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery.
    Liu Z; Zhao G; Brewer M; Lv Q; Sudhölter EJR
    Adv Colloid Interface Sci; 2021 Aug; 294():102467. PubMed ID: 34175528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing oil recovery: Innovative chemical EOR solutions for residual oil mobilization in Kazakhstan's waterflooded sandstone oilfield.
    Shakeel M; Sagandykova D; Mukhtarov A; Dauyltayeva A; Maratbekkyzy L; Pourafshary P; Musharova D
    Heliyon; 2024 Apr; 10(7):e28915. PubMed ID: 38586411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Efficiency of Zinc Oxide/Montmorillonite Nanocomposites and a New Derived Saponin in Liquid/Liquid/Solid Interface-Included Systems: Application in Nanotechnology-Assisted Enhanced Oil Recovery.
    Nourinia A; Manshad AK; Shadizadeh SR; Ali JA; Iglauer S; Keshavarz A; Mohammadi AH; Ali M
    ACS Omega; 2022 Jul; 7(29):24951-24972. PubMed ID: 35910115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static and dynamic adsorption of a gemini surfactant on a carbonate rock in the presence of low salinity water.
    Kalam S; Abu-Khamsin SA; Gbadamosi AO; Patil S; Kamal MS; Hussain SMS; Al-Shehri D; Al-Shalabi EW; Mohanty KK
    Sci Rep; 2023 Jul; 13(1):11936. PubMed ID: 37488132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Wettability on the Adsorption of an Anionic Surfactant on Sandstone Cores.
    Amirmoshiri M; Zhang L; Puerto MC; Tewari RD; Bahrim RZBK; Farajzadeh R; Hirasaki GJ; Biswal SL
    Langmuir; 2020 Sep; 36(36):10725-10738. PubMed ID: 32870010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant Adsorption Isotherms: A Review.
    Kalam S; Abu-Khamsin SA; Kamal MS; Patil S
    ACS Omega; 2021 Dec; 6(48):32342-32348. PubMed ID: 34901587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of α-MnO
    Kesarwani H; Srivastava V; Mandal A; Sharma S; Choubey AK
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44255-44270. PubMed ID: 35132514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.
    Zhao J; Wen D
    RSC Adv; 2017 Aug; 7(66):41391-41398. PubMed ID: 29308190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation, binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application.
    Belhaj AF; Elraies KA; Alnarabiji MS; Abdul Kareem FA; Shuhli JA; Mahmood SM; Belhaj H
    Chem Eng J; 2021 Feb; 406():127081. PubMed ID: 32989375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.