These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37771775)

  • 1. Three-dimensional nanofibrous sponges with aligned architecture and controlled hierarchy regulate neural stem cell fate for spinal cord regeneration.
    Li Z; Qi Y; Sun L; Li Z; Chen S; Zhang Y; Ma Y; Han J; Wang Z; Zhang Y; Geng H; Huang B; Wang J; Li G; Li X; Wu S; Ni S
    Theranostics; 2023; 13(14):4762-4780. PubMed ID: 37771775
    [No Abstract]   [Full Text] [Related]  

  • 2. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
    Song S; Li Y; Huang J; Cheng S; Zhang Z
    Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.
    Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z
    Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words).
    Wang XH; Tang XC; Li X; Qin JZ; Zhong WT; Wu P; Zhang F; Shen YX; Dai TT
    Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):699-708. PubMed ID: 34882059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury.
    Zhou X; Shi G; Fan B; Cheng X; Zhang X; Wang X; Liu S; Hao Y; Wei Z; Wang L; Feng S
    Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair.
    Hwang DH; Kim HM; Kang YM; Joo IS; Cho CS; Yoon BW; Kim SU; Kim BG
    Cell Transplant; 2011; 20(9):1361-79. PubMed ID: 21396156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury.
    Sun X; Bai Y; Zhai H; Liu S; Zhang C; Xu Y; Zou J; Wang T; Chen S; Zhu Q; Liu X; Mao H; Quan D
    Acta Biomater; 2019 Mar; 86():194-206. PubMed ID: 30586646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair.
    Xu B; Zhao Y; Xiao Z; Wang B; Liang H; Li X; Fang Y; Han S; Li X; Fan C; Dai J
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28233428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration.
    Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of controlled release of neurotrophin-3 from PCLA scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model.
    Tang S; Liao X; Shi B; Qu Y; Huang Z; Lin Q; Guo X; Pei F
    PLoS One; 2014; 9(9):e107517. PubMed ID: 25215612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury.
    Hu Y; Zhang F; Zhong W; Liu Y; He Q; Yang M; Chen H; Xu X; Bian K; Xu J; Li J; Shen Y; Zhang H
    J Mater Chem B; 2019 Dec; 7(47):7525-7539. PubMed ID: 31720683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mash-1 modified neural stem cells transplantation promotes neural stem cells differentiation into neurons to further improve locomotor functional recovery in spinal cord injury rats.
    Deng M; Xie P; Chen Z; Zhou Y; Liu J; Ming J; Yang J
    Gene; 2021 May; 781():145528. PubMed ID: 33631250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair.
    Zou Y; Ma D; Shen H; Zhao Y; Xu B; Fan Y; Sun Z; Chen B; Xue W; Shi Y; Xiao Z; Gu R; Dai J
    Biomater Sci; 2020 Sep; 8(18):5145-5156. PubMed ID: 32832944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D Fiber-Hydrogel Based Non-Viral Gene Delivery Platform Reveals that microRNAs Promote Axon Regeneration and Enhance Functional Recovery Following Spinal Cord Injury.
    Zhang N; Lin J; Lin VPH; Milbreta U; Chin JS; Chew EGY; Lian MM; Foo JN; Zhang K; Wu W; Chew SY
    Adv Sci (Weinh); 2021 Aug; 8(15):e2100805. PubMed ID: 34050637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury.
    Sun X; Zhang C; Xu J; Zhai H; Liu S; Xu Y; Hu Y; Long H; Bai Y; Quan D
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1228-1238. PubMed ID: 33464858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.