These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37772265)
1. Different Roles of Surface Chemistry and Roughness of Laser-Induced Graphene: Implications for Tunable Wettability. Dallinger A; Steinwender F; Gritzner M; Greco F ACS Appl Nano Mater; 2023 Sep; 6(18):16201-16211. PubMed ID: 37772265 [TBL] [Abstract][Full Text] [Related]
2. Insights into solid-contact ion-selective electrodes based on laser-induced graphene: Key performance parameters for long-term and continuous measurements. Soares RRA; Milião GL; Pola CC; Jing D; Opare-Addo J; Smith E; Claussen JC; Gomes CL Mikrochim Acta; 2024 Sep; 191(10):615. PubMed ID: 39311973 [TBL] [Abstract][Full Text] [Related]
3. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Li Y; Luong DX; Zhang J; Tarkunde YR; Kittrell C; Sargunaraj F; Ji Y; Arnusch CJ; Tour JM Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497883 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional Laser-Induced Graphene Papers with Combined Defocusing and Grafting Processes for Patternable and Continuously Tunable Wettability from Superlyophilicity to Superlyophobicity. Wang Y; Wang G; He M; Liu F; Han M; Tang T; Luo S Small; 2021 Oct; 17(42):e2103322. PubMed ID: 34523240 [TBL] [Abstract][Full Text] [Related]
5. Laser-Induced Graphene Superhydrophobic Surface Transition from Pinning to Rolling for Multiple Applications. Han Y; Han Y; Huang Y; Wang C; Liu H; Han L; Zhang Y Small Methods; 2022 Apr; 6(4):e2200096. PubMed ID: 35199498 [TBL] [Abstract][Full Text] [Related]
6. Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. Chen B; Johnson ZT; Sanborn D; Hjort RG; Garland NT; Soares RRA; Van Belle B; Jared N; Li J; Jing D; Smith EA; Gomes CL; Claussen JC ACS Nano; 2022 Jan; 16(1):15-28. PubMed ID: 34812606 [TBL] [Abstract][Full Text] [Related]
7. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning. Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830 [TBL] [Abstract][Full Text] [Related]
8. Laser-Induced Graphene. Ye R; James DK; Tour JM Acc Chem Res; 2018 Jul; 51(7):1609-1620. PubMed ID: 29924584 [TBL] [Abstract][Full Text] [Related]
10. Laminated Laser-Induced Graphene Composites. Li JT; Stanford MG; Chen W; Presutti SE; Tour JM ACS Nano; 2020 Jul; 14(7):7911-7919. PubMed ID: 32441916 [TBL] [Abstract][Full Text] [Related]
11. Comment on "Bioinspired Reversible Switch between Underwater Superoleophobicity/Superaerophobicity and Oleophilicity/Aerophilicity and Improved Antireflective Property on the Nanosecond Laser-Ablated Superhydrophobic Titanium Surfaces". Gregorčič P ACS Appl Mater Interfaces; 2021 Jan; 13(2):2117-2127. PubMed ID: 32208637 [TBL] [Abstract][Full Text] [Related]
12. All-graphene-based open fluidics for pumpless, small-scale fluid transport Hall LS; Hwang D; Chen B; Van Belle B; Johnson ZT; Hondred JA; Gomes CL; Bartlett MD; Claussen JC Nanoscale Horiz; 2021 Jan; 6(1):24-32. PubMed ID: 33165477 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Carbon Nanoparticle Coatings via Wettability. Griffo R; Di Natale F; Minale M; Sirignano M; Parisi A; Carotenuto C Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334572 [TBL] [Abstract][Full Text] [Related]
14. Achieving Superhydrophobicity of Zr-Based Metallic Glass Surfaces with Tunable Adhesion by Nanosecond Laser Ablation and Annealing. Cui M; Huang H; Wang C; Zhang L; Yan J ACS Appl Mater Interfaces; 2022 Aug; 14(34):39567-39576. PubMed ID: 35983650 [TBL] [Abstract][Full Text] [Related]
15. Surface Wettability and Electrical Resistance Analysis of Droplets on Indium-Tin-Oxide Glass Fabricated Using an Ultraviolet Laser System. Tsai HY; Hsu CN; Li CR; Lin YH; Hsiao WT; Huang KC; Yeh JA Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401451 [TBL] [Abstract][Full Text] [Related]
16. Laser-Induced Graphene-PVA Composites as Robust Electrically Conductive Water Treatment Membranes. Thakur AK; Singh SP; Kleinberg MN; Gupta A; Arnusch CJ ACS Appl Mater Interfaces; 2019 Mar; 11(11):10914-10921. PubMed ID: 30794741 [TBL] [Abstract][Full Text] [Related]
17. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Yan YY; Gao N; Barthlott W Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918 [TBL] [Abstract][Full Text] [Related]
18. Laser-Induced Graphene: From Discovery to Translation. Ye R; James DK; Tour JM Adv Mater; 2019 Jan; 31(1):e1803621. PubMed ID: 30368919 [TBL] [Abstract][Full Text] [Related]
19. The Tuning of LIPSS Wettability during Laser Machining and through Post-Processing. Wood MJ; Servio P; Kietzig AM Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920107 [TBL] [Abstract][Full Text] [Related]
20. Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics. Pinheiro T; Correia R; Morais M; Coelho J; Fortunato E; Sales MGF; Marques AC; Martins R ACS Nano; 2022 Dec; 16(12):20633-20646. PubMed ID: 36383513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]