These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37772403)

  • 1. Preventing Production Escape Using an Engineered Glucose-Inducible Genetic Circuit.
    Tavares LF; Ribeiro NV; Zocca VFB; Corrêa GG; Amorim LAS; Lins MRCR; Pedrolli DB
    ACS Synth Biol; 2023 Oct; 12(10):3124-3130. PubMed ID: 37772403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis.
    Han L; Chen Q; Luo J; Cui W; Zhou Z
    Microbiol Spectr; 2022 Oct; 10(5):e0132222. PubMed ID: 36036634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a repression-free catabolite-enhanced expression system for a thermophilic alpha-amylase from Bacillus licheniformis MSG.
    Nathan S; Nair M
    J Biotechnol; 2013 Dec; 168(4):394-402. PubMed ID: 24091300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the production of foreign proteins using a heterologous secretion vector system in Bacillus subtilis: effects of resistance to glucose-mediated catabolite repression.
    Kim SI; Nam YS; Lee SY
    Mol Cells; 1997 Dec; 7(6):788-94. PubMed ID: 9509422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.
    Meyer FM; Jules M; Mehne FM; Le Coq D; Landmann JJ; Görke B; Aymerich S; Stülke J
    J Bacteriol; 2011 Dec; 193(24):6939-49. PubMed ID: 22001508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of uridine production in Bacillus subtilis by metabolic engineering.
    Wang Y; Ma R; Liu L; He L; Ban R
    Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically Regulating Glucose Uptake to Reduce Overflow Metabolism with a Quorum-Sensing Circuit for the Efficient Synthesis of d-Pantothenic Acid in
    Yuan P; Xu M; Mao C; Zheng H; Sun D
    ACS Synth Biol; 2023 Oct; 12(10):2983-2995. PubMed ID: 37664894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis.
    Gu Y; Lv X; Liu Y; Li J; Du G; Chen J; Rodrigo LA; Liu L
    Metab Eng; 2019 Jan; 51():59-69. PubMed ID: 30343048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation.
    Wenzel M; Müller A; Siemann-Herzberg M; Altenbuchner J
    Appl Environ Microbiol; 2011 Sep; 77(18):6419-25. PubMed ID: 21803899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.
    Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis.
    Zhang X; Wang C; Liu L; Ban R
    Biotechnol Lett; 2020 Apr; 42(4):551-555. PubMed ID: 31993847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2).
    Wentzel A; Bruheim P; Øverby A; Jakobsen ØM; Sletta H; Omara WA; Hodgson DA; Ellingsen TE
    BMC Syst Biol; 2012 Jun; 6():59. PubMed ID: 22676814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible Population Quality Control of Engineered
    Cao Y; Tian R; Lv X; Li J; Liu L; Du G; Chen J; Liu Y
    ACS Synth Biol; 2021 Sep; 10(9):2197-2209. PubMed ID: 34404207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite repression-resistant mutants of Bacillus subtilis.
    Takahashi I
    Can J Microbiol; 1979 Nov; 25(11):1283-7. PubMed ID: 120218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes.
    Nagarajan DR; Krishnan C
    Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast.
    Peng B; Plan MR; Carpenter A; Nielsen LK; Vickers CE
    Biotechnol Biofuels; 2017; 10():43. PubMed ID: 28239415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.