These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37772403)

  • 21. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways.
    Li S; Jia X; Wen J
    Biotechnol Lett; 2012 Dec; 34(12):2253-8. PubMed ID: 22941373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.
    Ma W; Liu Y; Shin HD; Li J; Chen J; Du G; Liu L
    Bioresour Technol; 2018 Feb; 250():642-649. PubMed ID: 29220808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Bacillus subtilis for l-valine overproduction.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Tian R; Lv X; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Nucleic Acids Res; 2020 Jan; 48(2):996-1009. PubMed ID: 31799627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis.
    Phulara SC; Chaturvedi P; Chaurasia D; Diwan B; Gupta P
    J Biosci Bioeng; 2019 Apr; 127(4):458-464. PubMed ID: 30862359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain.
    Zhang Q; Wu Y; Gong M; Zhang H; Liu Y; Lv X; Li J; Du G; Liu L
    Essays Biochem; 2021 Jul; 65(2):173-185. PubMed ID: 34028523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis.
    Tanimura K; Takashima S; Matsumoto T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5781-9. PubMed ID: 26830100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Auto-inducible expression system based on the SigB-dependent ohrB promoter in Bacillus subtilis].
    Panahi R; Vasheghani-Farahani E; Shojaosadati SA; Bambai B
    Mol Biol (Mosk); 2014; 48(6):970-6. PubMed ID: 25845237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168.
    Jin P; Liang Z; Li H; Chen C; Xue Y; Du Q
    Carbohydr Polym; 2021 Jan; 251():117115. PubMed ID: 33142650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis.
    Jia X; Li S; Xie S; Wen J
    Appl Biochem Biotechnol; 2012 Sep; 168(1):1-9. PubMed ID: 21537892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
    Kleijn RJ; Buescher JM; Le Chat L; Jules M; Aymerich S; Sauer U
    J Biol Chem; 2010 Jan; 285(3):1587-96. PubMed ID: 19917605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis.
    Biswas R; Yamaoka M; Nakayama H; Kondo T; Yoshida K; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2012 May; 94(3):651-8. PubMed ID: 22361854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis.
    Vikromvarasiri N; Shirai T; Kondo A
    Microb Cell Fact; 2021 Oct; 20(1):196. PubMed ID: 34627250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of network topological units coordinating the global expression response to glucose in Bacillus subtilis and its comparison to Escherichia coli.
    Vázquez CD; Freyre-González JA; Gosset G; Loza JA; Gutiérrez-Ríos RM
    BMC Microbiol; 2009 Aug; 9():176. PubMed ID: 19703276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Engineering of
    Yin W; Cao Y; Jin M; Xian M; Liu W
    ACS Synth Biol; 2021 Sep; 10(9):2266-2275. PubMed ID: 34412469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.