These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37772477)

  • 1. A mini review on metal-organic framework-based electrode materials for capacitive deionization.
    Khan MS; Leong ZY; Li DS; Qiu J; Xu X; Yang HY
    Nanoscale; 2023 Oct; 15(39):15929-15949. PubMed ID: 37772477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchitectonics of Metal-Organic Frameworks for Capacitive Deionization via Controlled Pyrolyzed Approaches.
    Wang H; Chen B; Liu DJ; Xu X; Osmieri L; Yamauchi Y
    Small; 2022 Jan; 18(2):e2102477. PubMed ID: 34585513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs.
    Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review.
    Lin P; Liao M; Yang T; Sheng X; Wu Y; Xu X
    Front Chem; 2020; 8():575350. PubMed ID: 33330363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable Preparation of a N-Doped Hierarchical Porous Carbon Framework Derived from ZIF-8 for Highly Efficient Capacitive Deionization.
    Zhang L; Wang R; Chai W; Ma M; Li L
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48800-48809. PubMed ID: 37788171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes.
    Feng J; Liu L; Meng Q
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):447-458. PubMed ID: 32896674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization.
    Wang Z; Yan T; Shi L; Zhang D
    ACS Appl Mater Interfaces; 2017 May; 9(17):15068-15078. PubMed ID: 28418233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications.
    Chu M; Tian W; Zhao J; Zou M; Lu Z; Zhang D; Jiang J
    Chemosphere; 2022 Nov; 307(Pt 3):136024. PubMed ID: 35973487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Membrane Capacitive Deionization Based on Metal-Organic Framework-Derived Hierarchical Carbon Structures.
    Shi W; Ye C; Xu X; Liu X; Ding M; Liu W; Cao X; Shen J; Yang HY; Gao C
    ACS Omega; 2018 Aug; 3(8):8506-8513. PubMed ID: 31458979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin-Derived, Low-Cost Activated Carbon Electrodes.
    Zornitta RL; Srimuk P; Lee J; Krüner B; Aslan M; Ruotolo LAM; Presser V
    ChemSusChem; 2018 Jul; 11(13):2101-2113. PubMed ID: 29710382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Surge of Metal-Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment.
    Thiam A; Lopez-Ruiz JA; Barpaga D; Garcia-Segura S
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu-based MOF-derived architecture with Cu/Cu
    Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L
    Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination.
    Luo L; He Q; Chen S; Yang D; Chen Y
    Environ Res; 2022 May; 208():112727. PubMed ID: 35063431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization.
    Wu T; Wang G; Dong Q; Zhan F; Zhang X; Li S; Qiao H; Qiu J
    Environ Sci Technol; 2017 Aug; 51(16):9244-9251. PubMed ID: 28700208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.