These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37772830)

  • 1. Real-time continuous monitoring of dynamic concentration profiles studied with biosensing by particle motion.
    Bergkamp MH; Cajigas S; van IJzendoorn LJ; Prins MWJ
    Lab Chip; 2023 Oct; 23(20):4600-4609. PubMed ID: 37772830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Single-Molecule Sensors: How Can the Signals Be Analyzed in Real Time for Achieving Real-Time Continuous Biosensing?
    Bergkamp MH; Cajigas S; van IJzendoorn LJ; Prins MWJ
    ACS Sens; 2023 Jun; 8(6):2271-2281. PubMed ID: 37216442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Monitoring of Biomolecules: Dynamic Response Limits of Affinity-Based Sensors.
    Lubken RM; de Jong AM; Prins MWJ
    ACS Sens; 2022 Jan; 7(1):286-295. PubMed ID: 34978190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose response of near-infrared alginate-based microsphere sensors under dynamic reversible conditions.
    Chaudhary A; Harma H; Hanninen P; McShane MJ; Srivastava R
    Diabetes Technol Ther; 2011 Aug; 13(8):827-35. PubMed ID: 21568749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic delay and maximal dynamic error in continuous biosensors.
    Baker DA; Gough DA
    Anal Chem; 1996 Apr; 68(8):1292-7. PubMed ID: 8651496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous biomarker monitoring with single molecule resolution by measuring free particle motion.
    Buskermolen AD; Lin YT; van Smeden L; van Haaften RB; Yan J; Sergelen K; de Jong AM; Prins MWJ
    Nat Commun; 2022 Oct; 13(1):6052. PubMed ID: 36229441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Immunosensor for the Continuous Monitoring of Cortisol in Blood Plasma Sampled with Microdialysis.
    van Smeden L; Saris A; Sergelen K; de Jong AM; Yan J; Prins MWJ
    ACS Sens; 2022 Oct; 7(10):3041-3048. PubMed ID: 36255855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.
    Cohen N; Sabhachandani P; Golberg A; Konry T
    Biosens Bioelectron; 2015 Apr; 66():454-60. PubMed ID: 25497985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Immunosensor for Small-Molecule Monitoring in Industrial Food Processes.
    Vu C; Lin YT; Haenen SRR; Marschall J; Hummel A; Wouters SFA; Raats JMH; de Jong AM; Yan J; Prins MWJ
    Anal Chem; 2023 May; 95(20):7950-7959. PubMed ID: 37178186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.
    Seong-Jin Kim ; Euisik Yoon
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):189-96. PubMed ID: 23853141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor.
    Swensen JS; Xiao Y; Ferguson BS; Lubin AA; Lai RY; Heeger AJ; Plaxco KW; Soh HT
    J Am Chem Soc; 2009 Apr; 131(12):4262-6. PubMed ID: 19271708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a fluorescent dye-based microfluidic sensor for real-time detection of mAb aggregates.
    São Pedro MN; Eppink MHM; Ottens M
    Biotechnol Prog; 2024; 40(5):e3355. PubMed ID: 37161718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Absorbance and Fluorescence Measurements Using an Inlaid Microfluidic Approach.
    Creelman JJ; Luy EA; Beland GCH; Sonnichsen C; Sieben VJ
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning-Driven, Sensor-Integrated Microfluidic Device for Monitoring and Control of Supersaturation for Automated Screening of Crystalline Materials.
    Coliaie P; Prajapati A; Ali R; Korde A; Kelkar MS; Nere NK; Singh MR
    ACS Sens; 2022 Mar; 7(3):797-805. PubMed ID: 35045697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review.
    Matsuda E; Brennan P
    JBI Libr Syst Rev; 2012; 10(42 Suppl):1-10. PubMed ID: 27820140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Microwave Sensor for Detecting Saline in Biological Range.
    Kilpijärvi J; Halonen N; Juuti J; Hannu J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem.
    Weltin A; Slotwinski K; Kieninger J; Moser I; Jobst G; Wego M; Ehret R; Urban GA
    Lab Chip; 2014 Jan; 14(1):138-46. PubMed ID: 24217869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Small-Molecule Monitoring with a Digital Single-Particle Switch.
    Yan J; van Smeden L; Merkx M; Zijlstra P; Prins MWJ
    ACS Sens; 2020 Apr; 5(4):1168-1176. PubMed ID: 32189498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat.
    Ganguly A; Lin KC; Muthukumar S; Prasad S
    ACS Sens; 2021 Jan; 6(1):63-72. PubMed ID: 33382251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.