These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37772948)
1. MilliKelvin microwave impedance microscopy in a dry dilution refrigerator. Cao LW; Wu C; Bhattacharyya R; Zhang R; Allen MT Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37772948 [TBL] [Abstract][Full Text] [Related]
2. Implementing microwave impedance microscopy in a dilution refrigerator. Jiang Z; Chong SK; Zhang P; Deng P; Chu S; Jahanbani S; Wang KL; Lai K Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37125853 [TBL] [Abstract][Full Text] [Related]
3. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements. de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217 [TBL] [Abstract][Full Text] [Related]
4. Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale. Seabron E; MacLaren S; Xie X; Rotkin SV; Rogers JA; Wilson WL ACS Nano; 2016 Jan; 10(1):360-8. PubMed ID: 26688374 [TBL] [Abstract][Full Text] [Related]
5. A platform for far-infrared spectroscopy of quantum materials at millikelvin temperatures. Onyszczak M; Uzan-Narovlansky AJ; Tang Y; Wang P; Jia Y; Yu G; Song T; Singha R; Khoury JF; Schoop LM; Wu S Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37823766 [TBL] [Abstract][Full Text] [Related]
6. Comparison of cryogenic low-pass filters. Thalmann M; Pernau HF; Strunk C; Scheer E; Pietsch T Rev Sci Instrum; 2017 Nov; 88(11):114703. PubMed ID: 29195349 [TBL] [Abstract][Full Text] [Related]
8. Achieving μeV tunneling resolution in an in-operando scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research. Schwenk J; Kim S; Berwanger J; Ghahari F; Walkup D; Slot MR; Le ST; Cullen WG; Blankenship SR; Vranjkovic S; Hug HJ; Kuk Y; Giessibl FJ; Stroscio JA Rev Sci Instrum; 2020 Jul; 91(7):071101. PubMed ID: 32752869 [TBL] [Abstract][Full Text] [Related]
9. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy. Wu X; Hao Z; Wu D; Zheng L; Jiang Z; Ganesan V; Wang Y; Lai K Rev Sci Instrum; 2018 Apr; 89(4):043704. PubMed ID: 29716308 [TBL] [Abstract][Full Text] [Related]
10. Combining electron spin resonance spectroscopy with scanning tunneling microscopy at high magnetic fields. Drost R; Uhl M; Kot P; Siebrecht J; Schmid A; Merkt J; Wünsch S; Siegel M; Kieler O; Kleiner R; Ast CR Rev Sci Instrum; 2022 Apr; 93(4):043705. PubMed ID: 35489929 [TBL] [Abstract][Full Text] [Related]
11. A compact ultrahigh vacuum scanning tunneling microscope with dilution refrigeration. Balashov T; Meyer M; Wulfhekel W Rev Sci Instrum; 2018 Nov; 89(11):113707. PubMed ID: 30501324 [TBL] [Abstract][Full Text] [Related]
12. Millikelvin confocal microscope with free-space access and high-frequency electrical control. Descamps T; Liu F; Hangleiter T; Kindel S; Kardynał BE; Bluhm H Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39120446 [TBL] [Abstract][Full Text] [Related]
13. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Allen M; Cui Y; Yue Ma E; Mogi M; Kawamura M; Fulga IC; Goldhaber-Gordon D; Tokura Y; Shen ZX Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14511-14515. PubMed ID: 31266887 [TBL] [Abstract][Full Text] [Related]
15. Quartz tuning fork based microwave impedance microscopy. Cui YT; Ma EY; Shen ZX Rev Sci Instrum; 2016 Jun; 87(6):063711. PubMed ID: 27370463 [TBL] [Abstract][Full Text] [Related]
16. Cryogenic Electron Microscopy on Strongly Correlated Quantum Materials. Zhu Y Acc Chem Res; 2021 Sep; 54(18):3518-3528. PubMed ID: 34473926 [TBL] [Abstract][Full Text] [Related]
17. Low-temperature and high magnetic field dynamic scanning capacitance microscope. Baumgartner A; Suddards ME; Mellor CJ Rev Sci Instrum; 2009 Jan; 80(1):013704. PubMed ID: 19191438 [TBL] [Abstract][Full Text] [Related]
19. Insertable system for fast turnaround time microwave experiments in a dilution refrigerator. Ong FR; Orgiazzi JL; de Waard A; Frossati G; Lupascu A Rev Sci Instrum; 2012 Sep; 83(9):093904. PubMed ID: 23020391 [TBL] [Abstract][Full Text] [Related]
20. Engineering the microwave to infrared noise photon flux for superconducting quantum systems. Danilin S; Barbosa J; Farage M; Zhao Z; Shang X; Burnett J; Ridler N; Li C; Weides M EPJ Quantum Technol; 2022; 9(1):1. PubMed ID: 35098151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]