These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 37772983)

  • 1. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data.
    Amin MR; Hasan M; Arnab SP; DeGiorgio M
    Mol Biol Evol; 2023 Oct; 40(10):. PubMed ID: 37772983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensor decomposition based feature extraction and classification to detect natural selection from genomic data.
    Amin MR; Hasan M; Arnab SP; DeGiorgio M
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics.
    Arnab SP; Amin MR; DeGiorgio M
    Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37433019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ImaGene: a convolutional neural network to quantify natural selection from genomic data.
    Torada L; Lorenzon L; Beddis A; Isildak U; Pattini L; Mathieson S; Fumagalli M
    BMC Bioinformatics; 2019 Nov; 20(Suppl 9):337. PubMed ID: 31757205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On convolutional neural networks for selection inference: Revealing the effect of preprocessing on model learning and the capacity to discover novel patterns.
    Cecil RM; Sugden LA
    PLoS Comput Biol; 2023 Nov; 19(11):e1010979. PubMed ID: 38011281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting generative adversarial networks to infer natural selection from genetic data.
    Riley R; Mathieson I; Mathieson S
    Genetics; 2024 Apr; 226(4):. PubMed ID: 38386895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Positive Selection in Populations Using Genetic Data.
    Koropoulis A; Alachiotis N; Pavlidis P
    Methods Mol Biol; 2020; 2090():87-123. PubMed ID: 31975165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations.
    Pybus M; Luisi P; Dall'Olio GM; Uzkudun M; Laayouni H; Bertranpetit J; Engelken J
    Bioinformatics; 2015 Dec; 31(24):3946-52. PubMed ID: 26315912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-Learning Prospects for Detecting Selection Signatures Using Population Genomics Data.
    Kumar H; Panigrahi M; Panwar A; Rajawat D; Nayak SS; Saravanan KA; Kaisa K; Parida S; Bhushan B; Dutt T
    J Comput Biol; 2022 Sep; 29(9):943-960. PubMed ID: 35639362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting adaptive introgression in human evolution using convolutional neural networks.
    Gower G; Picazo PI; Fumagalli M; Racimo F
    Elife; 2021 May; 10():. PubMed ID: 34032215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid tensor decomposition in neural network compression.
    Wu B; Wang D; Zhao G; Deng L; Li G
    Neural Netw; 2020 Dec; 132():309-320. PubMed ID: 32977276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vec2image: an explainable artificial intelligence model for the feature representation and classification of high-dimensional biological data by vector-to-image conversion.
    Tang H; Yu X; Liu R; Zeng T
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35106553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction.
    Faust K; Xie Q; Han D; Goyle K; Volynskaya Z; Djuric U; Diamandis P
    BMC Bioinformatics; 2018 May; 19(1):173. PubMed ID: 29769044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Composite-Likelihood Method for Detecting Incomplete Selective Sweep from Population Genomic Data.
    Vy HM; Kim Y
    Genetics; 2015 Jun; 200(2):633-49. PubMed ID: 25911658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for Population Genetic Inference.
    Sheehan S; Song YS
    PLoS Comput Biol; 2016 Mar; 12(3):e1004845. PubMed ID: 27018908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy Support Tensor Product Adaptive Image Classification for the Internet of Things.
    Shi Z; Ma Y; Fu M
    Comput Intell Neurosci; 2022; 2022():3532605. PubMed ID: 35242178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps.
    Schrider DR; Mendes FK; Hahn MW; Kern AD
    Genetics; 2015 May; 200(1):267-84. PubMed ID: 25716978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing between recent balancing selection and incomplete sweep using deep neural networks.
    Isildak U; Stella A; Fumagalli M
    Mol Ecol Resour; 2021 Nov; 21(8):2706-2718. PubMed ID: 33749134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.