These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37772992)
1. Accelerating Cancer Histopathology Workflows with Chemical Imaging and Machine Learning. Falahkheirkhah K; Mukherjee SS; Gupta S; Herrera-Hernandez L; McCarthy MR; Jimenez RE; Cheville JC; Bhargava R Cancer Res Commun; 2023 Sep; 3(9):1875-1887. PubMed ID: 37772992 [TBL] [Abstract][Full Text] [Related]
2. Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study. Cahill LC; Fujimoto JG; Giacomelli MG; Yoshitake T; Wu Y; Lin DI; Ye H; Carrasco-Zevallos OM; Wagner AA; Rosen S Mod Pathol; 2019 Jul; 32(8):1158-1167. PubMed ID: 30914763 [TBL] [Abstract][Full Text] [Related]
3. DRAQ5 and Eosin ('D&E') as an Analog to Hematoxylin and Eosin for Rapid Fluorescence Histology of Fresh Tissues. Elfer KN; Sholl AB; Wang M; Tulman DB; Mandava SH; Lee BR; Brown JQ PLoS One; 2016; 11(10):e0165530. PubMed ID: 27788264 [TBL] [Abstract][Full Text] [Related]
4. Rapid digital pathology of H&E-stained fresh human brain specimens as an alternative to frozen biopsy. Borah BJ; Tseng YC; Wang KC; Wang HC; Huang HY; Chang K; Lin JR; Liao YH; Sun CK Commun Med (Lond); 2023 May; 3(1):77. PubMed ID: 37253966 [TBL] [Abstract][Full Text] [Related]
5. Virtual formalin-fixed and paraffin-embedded staining of fresh brain tissue via stimulated Raman CycleGAN model. Liu Z; Chen L; Cheng H; Ao J; Xiong J; Liu X; Chen Y; Mao Y; Ji M Sci Adv; 2024 Mar; 10(13):eadn3426. PubMed ID: 38536925 [TBL] [Abstract][Full Text] [Related]
6. Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS. Pietrowska M; Gawin M; Polańska J; Widłak P Proteomics; 2016 Jun; 16(11-12):1670-7. PubMed ID: 27001204 [TBL] [Abstract][Full Text] [Related]
7. Current Landscape of Advanced Imaging Tools for Pathology Diagnostics. Abraham TM; Levenson R Mod Pathol; 2024 Apr; 37(4):100443. PubMed ID: 38311312 [TBL] [Abstract][Full Text] [Related]
8. A generative adversarial approach to facilitate archival-quality histopathologic diagnoses from frozen tissue sections. Falahkheirkhah K; Guo T; Hwang M; Tamboli P; Wood CG; Karam JA; Sircar K; Bhargava R Lab Invest; 2022 May; 102(5):554-559. PubMed ID: 34963688 [TBL] [Abstract][Full Text] [Related]
9. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining. Kang L; Li X; Zhang Y; Wong TTW Photoacoustics; 2022 Mar; 25():100308. PubMed ID: 34703763 [TBL] [Abstract][Full Text] [Related]
10. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis. Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709 [TBL] [Abstract][Full Text] [Related]
11. Virtual Staining of Nonfixed Tissue Histology. Pillar N; Li Y; Zhang Y; Ozcan A Mod Pathol; 2024 May; 37(5):100444. PubMed ID: 38325706 [TBL] [Abstract][Full Text] [Related]
12. Unstained Tissue Imaging and Virtual Hematoxylin and Eosin Staining of Histologic Whole Slide Images. Koivukoski S; Khan U; Ruusuvuori P; Latonen L Lab Invest; 2023 May; 103(5):100070. PubMed ID: 36801642 [TBL] [Abstract][Full Text] [Related]
13. Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning. Yang Y; Liu Z; Huang J; Sun X; Ao J; Zheng B; Chen W; Shao Z; Hu H; Yang Y; Ji M Theranostics; 2023; 13(4):1342-1354. PubMed ID: 36923541 [TBL] [Abstract][Full Text] [Related]
14. Single acquisition label-free histology-like imaging with dual-contrast photoacoustic remote sensing microscopy. Ecclestone B; Dinakaran D; Haji Reza P J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34036757 [TBL] [Abstract][Full Text] [Related]
15. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy. Zhang L; Wu Y; Zheng B; Su L; Chen Y; Ma S; Hu Q; Zou X; Yao L; Yang Y; Chen L; Mao Y; Chen Y; Ji M Theranostics; 2019; 9(9):2541-2554. PubMed ID: 31131052 [TBL] [Abstract][Full Text] [Related]
16. Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy. Sun Y; You S; Du X; Spaulding A; Liu ZG; Chaney EJ; Spillman DR; Marjanovic M; Tu H; Boppart SA Quant Imaging Med Surg; 2020 Nov; 10(11):2177-2190. PubMed ID: 33139997 [TBL] [Abstract][Full Text] [Related]
17. Tissue Sampling and Processing for Histopathology Evaluation. Slaoui M; Bauchet AL; Fiette L Methods Mol Biol; 2017; 1641():101-114. PubMed ID: 28748459 [TBL] [Abstract][Full Text] [Related]
18. Method for sampling tissue for research which preserves pathological data in radical prostatectomy. Warren AY; Whitaker HC; Haynes B; Sangan T; McDuffus LA; Kay JD; Neal DE Prostate; 2013 Jan; 73(2):194-202. PubMed ID: 22806573 [TBL] [Abstract][Full Text] [Related]
19. Novel rapid intraoperative qualitative tumor detection by a residual convolutional neural network using label-free stimulated Raman scattering microscopy. Reinecke D; von Spreckelsen N; Mawrin C; Ion-Margineanu A; Fürtjes G; Jünger ST; Khalid F; Freudiger CW; Timmer M; Ruge MI; Goldbrunner R; Neuschmelting V Acta Neuropathol Commun; 2022 Aug; 10(1):109. PubMed ID: 35933416 [TBL] [Abstract][Full Text] [Related]