These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37773017)
41. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides. Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578 [TBL] [Abstract][Full Text] [Related]
42. Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Kim BG; Kim HJ; Back S; Nam KW; Jung Y; Han YK; Choi JW Sci Rep; 2014 Feb; 4():4225. PubMed ID: 24573326 [TBL] [Abstract][Full Text] [Related]
43. A lithium-oxygen battery based on lithium superoxide. Lu J; Lee YJ; Luo X; Lau KC; Asadi M; Wang HH; Brombosz S; Wen J; Zhai D; Chen Z; Miller DJ; Jeong YS; Park JB; Fang ZZ; Kumar B; Salehi-Khojin A; Sun YK; Curtiss LA; Amine K Nature; 2016 Jan; 529(7586):377-82. PubMed ID: 26751057 [TBL] [Abstract][Full Text] [Related]
44. Tuning the Morphology and Crystal Structure of Li2O2: A Graphene Model Electrode Study for Li-O2 Battery. Yang Y; Zhang T; Wang X; Chen L; Wu N; Liu W; Lu H; Xiao L; Fu L; Zhuang L ACS Appl Mater Interfaces; 2016 Aug; 8(33):21350-7. PubMed ID: 27459128 [TBL] [Abstract][Full Text] [Related]
45. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride. Zhu Z; Ni Y; Lv Q; Geng J; Xie W; Li F; Chen J Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33879619 [TBL] [Abstract][Full Text] [Related]
46. MIL-53 Metal-Organic Framework as a Flexible Cathode for Lithium-Oxygen Batteries. Zhang Y; Gikonyo B; Khodja H; Gauthier M; Foy E; Goetz B; Serre C; Coste Leconte S; Pimenta V; Surblé S Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443140 [TBL] [Abstract][Full Text] [Related]
47. Advances in Lithium-Oxygen Batteries Based on Lithium Hydroxide Formation and Decomposition. Zhang X; Dong P; Song MK Front Chem; 2022; 10():923936. PubMed ID: 35844634 [TBL] [Abstract][Full Text] [Related]
48. Formation of toroidal Li Wu M; Kim DY; Park H; Cho KM; Kim JY; Kim SJ; Choi S; Kang Y; Kim J; Jung HT RSC Adv; 2019 Dec; 9(70):41120-41125. PubMed ID: 35540088 [TBL] [Abstract][Full Text] [Related]
49. Surface Mechanism of Catalytic Electrodes in Lithium-Oxygen Batteries: How Nanostructures Mediate the Interfacial Reactions. Shen ZZ; Zhou C; Wen R; Wan LJ J Am Chem Soc; 2020 Sep; 142(37):16007-16015. PubMed ID: 32815719 [TBL] [Abstract][Full Text] [Related]
50. Effect of Mesoporous Structured Cathode Materials on Charging Potentials and Rate Capability of Lithium-Oxygen Batteries. Park J; Jeong J; Lee S; Jo C; Lee J ChemSusChem; 2015 Sep; 8(18):3146-52. PubMed ID: 26223825 [TBL] [Abstract][Full Text] [Related]
51. Co₃O₄-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability. Xu SM; Zhu QC; Du FH; Li XH; Wei X; Wang KX; Chen JS Dalton Trans; 2015 May; 44(18):8678-84. PubMed ID: 25854214 [TBL] [Abstract][Full Text] [Related]
52. Computational Insights into Li Yi X; Liu X; Zhang P; Dou R; Wen Z; Zhou W J Phys Chem Lett; 2020 Mar; 11(6):2195-2202. PubMed ID: 31951140 [TBL] [Abstract][Full Text] [Related]
53. Single-Atom-Mediated Spinel Octahedral Structures for Elevated Performances of Li-Oxygen Batteries. Zhang Y; Zhang S; Ma J; Chen X; Nan C; Chen C Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202218926. PubMed ID: 36786069 [TBL] [Abstract][Full Text] [Related]
54. Monodispersed Ruthenium Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for an Efficient Lithium-Oxygen Battery. Dai W; Liu Y; Wang M; Lin M; Lian X; Luo Y; Yang J; Chen W ACS Appl Mater Interfaces; 2021 May; 13(17):19915-19926. PubMed ID: 33881825 [TBL] [Abstract][Full Text] [Related]
55. Heterostructured NiS Hu A; Lv W; Lei T; Chen W; Hu Y; Shu C; Wang X; Xue L; Huang J; Du X; Wang H; Tang K; Gong C; Zhu J; He W; Long J; Xiong J ACS Nano; 2020 Mar; 14(3):3490-3499. PubMed ID: 32101395 [TBL] [Abstract][Full Text] [Related]
56. Homogeneous Catalytic Process of a Heterogeneous Ru Catalyst in Li-O Liao CH; Chiang CY; Iputera K; Hu SF; Liu RS ACS Appl Mater Interfaces; 2024 Feb; 16(7):8783-8790. PubMed ID: 38335216 [TBL] [Abstract][Full Text] [Related]
57. Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries. Chen X; Zhang Y; Chen C; Li H; Lin Y; Yu K; Nan C; Chen C Nanomicro Lett; 2023 Nov; 16(1):27. PubMed ID: 37989893 [TBL] [Abstract][Full Text] [Related]
58. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Liu P; Han J; Guo X; Ito Y; Yang C; Ning S; Fujita T; Hirata A; Chen M Sci Rep; 2018 Feb; 8(1):3134. PubMed ID: 29453422 [TBL] [Abstract][Full Text] [Related]
59. Cage-Type Highly Graphitic Porous Carbon-Co3O4 Polyhedron as the Cathode of Lithium-Oxygen Batteries. Tang J; Wu S; Wang T; Gong H; Zhang H; Alshehri SM; Ahamad T; Zhou H; Yamauchi Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2796-804. PubMed ID: 26788868 [TBL] [Abstract][Full Text] [Related]