These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 37773310)
21. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies. Wu Q; Tian R; He X; Liu J; Ou C; Li Y; Fu X Front Immunol; 2023; 14():1164408. PubMed ID: 37090728 [TBL] [Abstract][Full Text] [Related]
22. A Computed Tomography-Based Radiomic Prognostic Marker of Advanced High-Grade Serous Ovarian Cancer Recurrence: A Multicenter Study. Wei W; Liu Z; Rong Y; Zhou B; Bai Y; Wei W; Wang S; Wang M; Guo Y; Tian J Front Oncol; 2019; 9():255. PubMed ID: 31024855 [No Abstract] [Full Text] [Related]
23. A radiogenomics biomarker based on immunological heterogeneity for non-invasive prognosis of renal clear cell carcinoma. Gao J; Ye F; Han F; Jiang H; Zhang J Front Immunol; 2022; 13():956679. PubMed ID: 36177018 [TBL] [Abstract][Full Text] [Related]
24. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
25. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041 [TBL] [Abstract][Full Text] [Related]
26. Predicting Neoadjuvant Chemotherapy Response and High-Grade Serous Ovarian Cancer From CT Images in Ovarian Cancer with Multitask Deep Learning: A Multicenter Study. Yin R; Guo Y; Wang Y; Zhang Q; Dou Z; Wang Y; Qi L; Chen Y; Zhang C; Li H; Jian X; Ma W Acad Radiol; 2023 Sep; 30 Suppl 2():S192-S201. PubMed ID: 37336707 [TBL] [Abstract][Full Text] [Related]
27. Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma. Lu W; Zhong L; Dong D; Fang M; Dai Q; Leng S; Zhang L; Sun W; Tian J; Zheng J; Jin Y Eur J Radiol; 2019 Sep; 118():231-238. PubMed ID: 31439247 [TBL] [Abstract][Full Text] [Related]
28. Intra- and peritumoral radiomics for predicting early recurrence in patients with high-grade serous ovarian cancer. Wu Y; Jiang W; Fu L; Ren M; Ai H; Wang X Abdom Radiol (NY); 2023 Feb; 48(2):733-743. PubMed ID: 36445408 [TBL] [Abstract][Full Text] [Related]
29. Predicting Hematoma Expansion and Prognosis in Cerebral Contusions: A Radiomics-Clinical Approach. He H; Liu J; Li C; Guo Y; Liang K; Du J; Xue J; Liang Y; Chen P; Liu L; Cui M; Wang J; Liu Y; Tian S; Deng Y J Neurotrauma; 2024 Jun; 41(11-12):1337-1352. PubMed ID: 38326935 [TBL] [Abstract][Full Text] [Related]
30. CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer. Wan S; Zhou T; Che R; Li Y; Peng J; Wu Y; Gu S; Cheng J; Hua X J Ovarian Res; 2023 Jan; 16(1):1. PubMed ID: 36597144 [TBL] [Abstract][Full Text] [Related]
31. A nomogram model based on the number of examined lymph nodes-related signature to predict prognosis and guide clinical therapy in gastric cancer. Li H; Lin D; Yu Z; Li H; Zhao S; Hainisayimu T; Liu L; Wang K Front Immunol; 2022; 13():947802. PubMed ID: 36405735 [TBL] [Abstract][Full Text] [Related]
32. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors. Tan Y; Mu W; Wang XC; Yang GQ; Gillies RJ; Zhang H Eur J Radiol; 2019 Nov; 120():108609. PubMed ID: 31606714 [TBL] [Abstract][Full Text] [Related]
33. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901 [TBL] [Abstract][Full Text] [Related]
34. Radiomic Nomogram for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer: Predictive Value of Staging Contrast-enhanced CT. Huang X; Mai J; Huang Y; He L; Chen X; Wu X; Li Y; Yang X; Dong M; Huang J; Zhang F; Liang C; Liu Z Clin Breast Cancer; 2021 Aug; 21(4):e388-e401. PubMed ID: 33451965 [TBL] [Abstract][Full Text] [Related]
35. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Zheng J; Yu H; Batur J; Shi Z; Tuerxun A; Abulajiang A; Lu S; Kong J; Huang L; Wu S; Wu Z; Qiu Y; Lin T; Zou X Kidney Int; 2021 Oct; 100(4):870-880. PubMed ID: 34129883 [TBL] [Abstract][Full Text] [Related]
36. Predicting cell invasion in breast tumor microenvironment from radiological imaging phenotypes. Arefan D; Hausler RM; Sumkin JH; Sun M; Wu S BMC Cancer; 2021 Apr; 21(1):370. PubMed ID: 33827490 [TBL] [Abstract][Full Text] [Related]
37. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Gu D; Hu Y; Ding H; Wei J; Chen K; Liu H; Zeng M; Tian J Eur Radiol; 2019 Dec; 29(12):6880-6890. PubMed ID: 31227882 [TBL] [Abstract][Full Text] [Related]
38. A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer. Zhu Z; Chen M; Hu G; Pan Z; Han W; Tan W; Zhou Z; Wang M; Mao L; Li X; Sui X; Song L; Xu Y; Song W; Yu Y; Jin Z Eur Radiol; 2023 Jun; 33(6):3918-3930. PubMed ID: 36515714 [TBL] [Abstract][Full Text] [Related]
39. Risk stratification of thymic epithelial tumors by using a nomogram combined with radiomic features and TNM staging. Shen Q; Shan Y; Xu W; Hu G; Chen W; Feng Z; Pang P; Ding Z; Cai W Eur Radiol; 2021 Jan; 31(1):423-435. PubMed ID: 32757051 [TBL] [Abstract][Full Text] [Related]
40. Integrative nomogram of CT imaging, clinical, and hematological features for survival prediction of patients with locally advanced non-small cell lung cancer. Wang L; Dong T; Xin B; Xu C; Guo M; Zhang H; Feng D; Wang X; Yu J Eur Radiol; 2019 Jun; 29(6):2958-2967. PubMed ID: 30643940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]