BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37773806)

  • 1. Transitional zone prostate cancer: Performance of texture-based machine learning and image-based deep learning.
    Lee MS; Kim YJ; Moon MH; Kim KG; Park JH; Sung CK; Jeong H; Son H
    Medicine (Baltimore); 2023 Sep; 102(39):e35039. PubMed ID: 37773806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis.
    Wu M; Krishna S; Thornhill RE; Flood TA; McInnes MDF; Schieda N
    J Magn Reson Imaging; 2019 Sep; 50(3):940-950. PubMed ID: 30701625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI.
    Iyama Y; Nakaura T; Katahira K; Iyama A; Nagayama Y; Oda S; Utsunomiya D; Yamashita Y
    Eur Radiol; 2017 Sep; 27(9):3600-3608. PubMed ID: 28289941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinico-radiological characteristic-based machine learning in reducing unnecessary prostate biopsies of PI-RADS 3 lesions with dual validation.
    Kan Y; Zhang Q; Hao J; Wang W; Zhuang J; Gao J; Huang H; Liang J; Marra G; Calleris G; Oderda M; Zhao X; Gontero P; Guo H
    Eur Radiol; 2020 Nov; 30(11):6274-6284. PubMed ID: 32524222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dynamic contrast enhancement on transition zone prostate cancer in Prostate Imaging Reporting and Data System Version 2.1.
    Zhang J; Xu L; Zhang G; Zhang X; Bai X; Sun H; Jin Z
    Radiol Oncol; 2023 Mar; 57(1):42-50. PubMed ID: 36655324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Pathological Upgrading at Radical Prostatectomy in Prostate Cancer Eligible for Active Surveillance: A Texture Features and Machine Learning-Based Analysis of Apparent Diffusion Coefficient Maps.
    Xie J; Li B; Min X; Zhang P; Fan C; Li Q; Wang L
    Front Oncol; 2020; 10():604266. PubMed ID: 33614487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can machine learning-based analysis of multiparameter MRI and clinical parameters improve the performance of clinically significant prostate cancer diagnosis?
    Peng T; Xiao J; Li L; Pu B; Niu X; Zeng X; Wang Z; Gao C; Li C; Chen L; Yang J
    Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2235-2249. PubMed ID: 34677748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging the gap between prostate radiology and pathology through machine learning.
    Bhattacharya I; Lim DS; Aung HL; Liu X; Seetharaman A; Kunder CA; Shao W; Soerensen SJC; Fan RE; Ghanouni P; To'o KJ; Brooks JD; Sonn GA; Rusu M
    Med Phys; 2022 Aug; 49(8):5160-5181. PubMed ID: 35633505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation.
    Ji X; Zhang J; Shi W; He D; Bao J; Wei X; Huang Y; Liu Y; Chen JC; Gao X; Tang Y; Xia W
    Phys Eng Sci Med; 2021 Sep; 44(3):745-754. PubMed ID: 34075559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features.
    Bernatz S; Ackermann J; Mandel P; Kaltenbach B; Zhdanovich Y; Harter PN; Döring C; Hammerstingl R; Bodelle B; Smith K; Bucher A; Albrecht M; Rosbach N; Basten L; Yel I; Wenzel M; Bankov K; Koch I; Chun FK; Köllermann J; Wild PJ; Vogl TJ
    Eur Radiol; 2020 Dec; 30(12):6757-6769. PubMed ID: 32676784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple analyses suggests texture features can indicate the presence of tumor in the prostate tissue.
    Souza SAS; Reis LO; Alves AFF; Silva LC; Medeiros MCK; Andrade DL; Billis A; Amaro JL; Martins DL; Trindade AP; Miranda JRA; Pina DR
    Phys Eng Sci Med; 2022 Jun; 45(2):525-535. PubMed ID: 35325377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.
    Aldoj N; Lukas S; Dewey M; Penzkofer T
    Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer learning with CNNs for efficient prostate cancer and BPH detection in transrectal ultrasound images.
    Huang TL; Lu NH; Huang YH; Twan WH; Yeh LR; Liu KY; Chen TB
    Sci Rep; 2023 Dec; 13(1):21849. PubMed ID: 38071254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating prostate cancer from benign prostatic hyperplasia using whole-lesion histogram and texture analysis of diffusion- and T2-weighted imaging.
    Xing P; Chen L; Yang Q; Song T; Ma C; Grimm R; Fu C; Wang T; Peng W; Lu J
    Cancer Imaging; 2021 Sep; 21(1):54. PubMed ID: 34579789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade.
    Bektas CT; Kocak B; Yardimci AH; Turkcanoglu MH; Yucetas U; Koca SB; Erdim C; Kilickesmez O
    Eur Radiol; 2019 Mar; 29(3):1153-1163. PubMed ID: 30167812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The value of relaxation time quantitative technique from synthetic magnetic resonance imaging in the diagnosis and invasion assessment of prostate cancer].
    Song N; Wang T; Zhang D; Wang Z; Zhang SR; Yu J; Cai L; Ma AL; Zhang Q; Chen ZQ
    Zhonghua Yi Xue Za Zhi; 2022 Apr; 102(15):1093-1099. PubMed ID: 35436808
    [No Abstract]   [Full Text] [Related]  

  • 18. Application and Clinical Value of Machine Learning-Based Cervical Cancer Diagnosis and Prediction Model in Adjuvant Chemotherapy for Cervical Cancer: A Single-Center, Controlled, Non-Arbitrary Size Case-Control Study.
    Wang Y; Shen L; Jin J; Wang G
    Contrast Media Mol Imaging; 2022; 2022():2432291. PubMed ID: 35821886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring.
    Singh D; Kumar V; Das CJ; Singh A; Mehndiratta A
    NMR Biomed; 2021 Jun; 34(6):e4495. PubMed ID: 33638244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.