BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37774123)

  • 1. High-accuracy optical coherence elastography digital volume correlation methods to measure depth regions with low correlation.
    Lin X; Chen J; Sun C
    J Biophotonics; 2024 Jan; 17(1):e202300094. PubMed ID: 37774123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence elastography based on inverse compositional Gauss-Newton digital volume correlation with second-order shape function.
    Wu H; Wang J; Amaya Catano JA; Sun C; Li Z
    Opt Express; 2022 Nov; 30(23):41954-41968. PubMed ID: 36366659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-accuracy and high-efficiency digital volume correlation method to characterize in-vivo optic nerve head biomechanics from optical coherence tomography.
    Zhong F; Wang B; Wei J; Hua Y; Wang B; Reynaud J; Fortune B; Sigal IA
    Acta Biomater; 2022 Apr; 143():72-86. PubMed ID: 35196556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital image correlation-based optical coherence elastography.
    Sun C; Standish B; Vuong B; Wen XY; Yang V
    J Biomed Opt; 2013 Dec; 18(12):121515. PubMed ID: 24346855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional static optical coherence elastography based on inverse compositional Gauss-Newton digital volume correlation.
    Meng F; Chen C; Hui S; Wang J; Feng Y; Sun C
    J Biophotonics; 2019 Sep; 12(9):e201800422. PubMed ID: 31008547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence elastography and its applications for the biomechanical characterization of tissues.
    Wang C; Zhu J; Ma J; Meng X; Ma Z; Fan F
    J Biophotonics; 2023 Dec; 16(12):e202300292. PubMed ID: 37774137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography.
    De Stefano VS; Ford MR; Seven I; Dupps WJ
    PLoS One; 2018; 13(12):e0209480. PubMed ID: 30592752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances.
    Zaitsev VY; Matveyev AL; Matveev LA; Sovetsky AA; Hepburn MS; Mowla A; Kennedy BF
    J Biophotonics; 2021 Feb; 14(2):e202000257. PubMed ID: 32749033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence elastography in ophthalmology.
    Kirby MA; Pelivanov I; Song S; Ambrozinski Ł; Yoon SJ; Gao L; Li D; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2017 Dec; 22(12):1-28. PubMed ID: 29275544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence elastography for tissue characterization: a review.
    Wang S; Larin KV
    J Biophotonics; 2015 Apr; 8(4):279-302. PubMed ID: 25412100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crawling wave optical coherence elastography.
    Meemon P; Yao J; Chu YJ; Zvietcovich F; Parker KJ; Rolland JP
    Opt Lett; 2016 Mar; 41(5):847-50. PubMed ID: 26974061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography.
    Zaitsev VY; Matveyev AL; Matveev LA; Gelikonov GV; Gelikonov VM; Vitkin A
    J Biomed Opt; 2015 Jul; 20(7):75006. PubMed ID: 26172612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-Resolved Optical Coherence Elastography: An Insight into Tissue Displacement Estimation.
    Batista A; Serranho P; Santos MJ; Correia C; Domingues JP; Loureiro C; Cardoso J; Barbeiro S; Morgado M; Bernardes R
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence elastography: current status and future applications.
    Sun C; Standish B; Yang VX
    J Biomed Opt; 2011 Apr; 16(4):043001. PubMed ID: 21529067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans.
    Kennedy BF; Malheiro FG; Chin L; Sampson DD
    J Biomed Opt; 2014; 19(7):076006. PubMed ID: 25003754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular elasticity measurement of the great saphenous vein based on optical coherence elastography.
    Gao T; Liu S; Wang A; Tang X; Fan Y
    J Biophotonics; 2023 Feb; 16(2):e202200245. PubMed ID: 36067058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational optical coherence elastography for assessment of systemic sclerosis.
    Liu CH; Assassi S; Theodore S; Smith C; Schill A; Singh M; Aglyamov S; Mohan C; Larin KV
    J Biophotonics; 2019 Dec; 12(12):e201900236. PubMed ID: 31343837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-D Ultrasonic Array-Based Optical Coherence Elastography.
    Kang H; Qian X; Chen R; Wodnicki R; Sun Y; Li R; Li Y; Shung KK; Chen Z; Zhou Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1096-1104. PubMed ID: 33095699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking.
    Zaitsev VY; Matveyev AL; Matveev LA; Gelikonov GV; Gubarkova EV; Gladkova ND; Vitkin A
    J Biophotonics; 2016 May; 9(5):499-509. PubMed ID: 27159850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.