These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37774151)

  • 21. Importance of Surface IrO
    Escudero-Escribano M; Pedersen AF; Paoli EA; Frydendal R; Friebel D; Malacrida P; Rossmeisl J; Stephens IEL; Chorkendorff I
    J Phys Chem B; 2018 Jan; 122(2):947-955. PubMed ID: 29045788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IrO
    Yang Y; Ji Y; Li G; Li Y; Jia B; Yan J; Ma T; Liu SF
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26790-26797. PubMed ID: 34591342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ce Single-Atom Incorporation Enhances the Oxygen Evolution Reaction of Co
    Zhao W; Xu F; Yang J; Hu X; Weng B
    Inorg Chem; 2024 Jan; 63(4):1947-1953. PubMed ID: 38215462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Supported WO
    Zhang X; Wu F; Zhang Q; Lu Z; Zheng Y; Zhu Y; Lin Y
    Inorg Chem; 2024 May; 63(18):8418-8425. PubMed ID: 38644568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions.
    Salimi P; Najafpour MM
    Chemistry; 2020 Dec; 26(71):17063-17068. PubMed ID: 32852097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multistage Electron Distribution Engineering of Iridium Oxide by Codoping W and Sn for Enhanced Acidic Water Oxidation Electrocatalysis.
    He J; Fu G; Zhang J; Xu P; Sun J
    Small; 2022 Oct; 18(41):e2203365. PubMed ID: 36089667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient and stable noble-metal-free catalyst for acidic water oxidation.
    Pan S; Li H; Liu D; Huang R; Pan X; Ren D; Li J; Shakouri M; Zhang Q; Wang M; Wei C; Mai L; Zhang B; Zhao Y; Wang Z; Graetzel M; Zhang X
    Nat Commun; 2022 Apr; 13(1):2294. PubMed ID: 35484271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reducing the Ir-O Coordination Number in Anodic Catalysts based on IrO
    Gao H; Xiao Z; Du S; Liu T; Huang YC; Shi J; Zhu Y; Huang G; Zhou B; He Y; Dong CL; Li Y; Chen R; Wang S
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202313954. PubMed ID: 37867149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Etching Switches Electrocatalytic Oxygen Evolution Pathway of IrO
    Tan X; Zhang M; Chen D; Li W; Gou W; Qu Y; Ma Y
    Small; 2023 Nov; 19(44):e2303249. PubMed ID: 37386788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.
    Oh HS; Nong HN; Reier T; Bergmann A; Gliech M; Ferreira de Araújo J; Willinger E; Schlögl R; Teschner D; Strasser P
    J Am Chem Soc; 2016 Sep; 138(38):12552-63. PubMed ID: 27549910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BaIrO
    Li N; Cai L; Wang C; Lin Y; Huang J; Sheng H; Pan H; Zhang W; Ji Q; Duan H; Hu W; Zhang W; Hu F; Tan H; Sun Z; Song B; Jin S; Yan W
    J Am Chem Soc; 2021 Nov; 143(43):18001-18009. PubMed ID: 34694127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution.
    Guo H; Fang Z; Li H; Fernandez D; Henkelman G; Humphrey SM; Yu G
    ACS Nano; 2019 Nov; 13(11):13225-13234. PubMed ID: 31668069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation.
    Wen Y; Chen P; Wang L; Li S; Wang Z; Abed J; Mao X; Min Y; Dinh CT; Luna P; Huang R; Zhang L; Wang L; Wang L; Nielsen RJ; Li H; Zhuang T; Ke C; Voznyy O; Hu Y; Li Y; Goddard WA; Zhang B; Peng H; Sargent EH
    J Am Chem Soc; 2021 May; 143(17):6482-6490. PubMed ID: 33891414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Capturing and Regulating Key Intermediates for High-Efficiency Oxygen Evolution Reactions.
    Qian ZX; Peng CK; Yue MF; Hsu LC; Zeng JS; Wei DY; Du ZY; Xu GY; Zhang H; Tian JH; Chen SY; Lin YG; Li JF
    Small Methods; 2024 Sep; 8(9):e2301504. PubMed ID: 38148311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal-Driven Orderly Assembly of Ir-atomic Chains on α-MnO
    Gao J; Wu X; Teng X; Zhang K; Zhao H; Li J; Zhang J
    Chempluschem; 2024 May; 89(5):e202300680. PubMed ID: 38263338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ce-Doped IrO
    Wang Y; Hao S; Liu X; Wang Q; Su Z; Lei L; Zhang X
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37006-37012. PubMed ID: 32709192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust Porous TiN Layer for Improved Oxygen Evolution Reaction Performance.
    Liu G; Hou F; Wang X; Fang B
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Construction of MnO
    Zhao Q; Lu Z; Xie J; Hu J; Cao Y; Hao A
    Inorg Chem; 2023 Feb; 62(8):3532-3540. PubMed ID: 36791254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MnO
    Li Y; Wei X; Han S; Chen L; Shi J
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21464-21472. PubMed ID: 34322983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.