These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37774291)

  • 1. Dynamics of Nucleation in Solids: A Self-Consistent Phase Field Approach.
    Simeone D; Tissot O; Garcia P; Luneville L
    Phys Rev Lett; 2023 Sep; 131(11):117101. PubMed ID: 37774291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical nucleation theory in the phase-field crystal model.
    Jreidini P; Kocher G; Provatas N
    Phys Rev E; 2018 Apr; 97(4-1):042802. PubMed ID: 29758669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: wetting, Ostwald's step rule, and vanishing polymorphs.
    Santra M; Singh RS; Bagchi B
    J Phys Chem B; 2013 Oct; 117(42):13154-63. PubMed ID: 23713546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical Approach to Crystal Nucleation in Glass-Forming Liquids.
    Deubener J; Schmelzer JWP
    Entropy (Basel); 2021 Feb; 23(2):. PubMed ID: 33672620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling phase separation in solids beyond the classical nucleation theory: Application to FeCr.
    Luneville L; Tissot O; Pareige C; Simeone D
    J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39387411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical Nucleation Theory for Active Fluid Phase Separation.
    Cates ME; Nardini C
    Phys Rev Lett; 2023 Mar; 130(9):098203. PubMed ID: 36930897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity nucleation in single-component homogeneous amorphous solids under negative pressure.
    Galimzyanov BN; Mokshin AV
    J Phys Condens Matter; 2022 Aug; 34(41):. PubMed ID: 35925006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple correction to the classical theory of homogeneous nucleation.
    Nadykto AB; Yu F
    J Chem Phys; 2005 Mar; 122(10):104511. PubMed ID: 15836336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.
    Iwamatsu M
    J Chem Phys; 2008 Feb; 128(8):084504. PubMed ID: 18315058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent nucleation: thermodynamically consistent description of the nucleation work.
    Kashchiev D
    J Chem Phys; 2004 Feb; 120(8):3749-58. PubMed ID: 15268538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple improvements to classical bubble nucleation models.
    Tanaka KK; Tanaka H; Angélil R; Diemand J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022401. PubMed ID: 26382410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Argon nucleation: bringing together theory, simulations, and experiment.
    Kalikmanov VI; Wölk J; Kraska T
    J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous nucleation of n-nonane and n-propanol mixtures: a comparison of classical nucleation theory and experiments.
    Gaman AI; Napari I; Winkler PM; Vehkamäki H; Wagner PE; Strey R; Viisanen Y; Kulmala M
    J Chem Phys; 2005 Dec; 123(24):244502. PubMed ID: 16396544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic improvement of classical nucleation theory.
    Prestipino S; Laio A; Tosatti E
    Phys Rev Lett; 2012 Jun; 108(22):225701. PubMed ID: 23003623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.