These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 37774375)
1. Post-Kohn-Sham Random-Phase Approximation and Correction Terms in the Expectation-Value Coupled-Cluster Formulation. Cieśliński D; Tucholska AM; Modrzejewski M J Chem Theory Comput; 2023 Oct; 19(19):6619-6631. PubMed ID: 37774375 [TBL] [Abstract][Full Text] [Related]
2. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488 [TBL] [Abstract][Full Text] [Related]
3. Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene. Pham KN; Modrzejewski M; Klimeš J J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856055 [TBL] [Abstract][Full Text] [Related]
4. Generalized perturbative singles corrections to the random phase approximation method: Impact on noncovalent interaction energies of closed- and open-shell dimers. Joshi P; Voora VK J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258929 [TBL] [Abstract][Full Text] [Related]
5. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. Modrzejewski M; Yourdkhani S; Śmiga S; Klimeš J J Chem Theory Comput; 2021 Feb; 17(2):804-817. PubMed ID: 33445879 [TBL] [Abstract][Full Text] [Related]
6. Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks. Tahir MN; Zhu T; Shang H; Li J; Blum V; Ren X J Chem Theory Comput; 2022 Sep; 18(9):5297-5311. PubMed ID: 35959556 [TBL] [Abstract][Full Text] [Related]
7. Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by Using Nondynamically Correlated Canonical Orbitals. Rodríguez-Mayorga M; Mitxelena I; Bruneval F; Piris M J Chem Theory Comput; 2021 Dec; 17(12):7562-7574. PubMed ID: 34806362 [TBL] [Abstract][Full Text] [Related]
8. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials. Jin Y; Yang Y; Zhang D; Peng D; Yang W J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104 [TBL] [Abstract][Full Text] [Related]
9. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation. Burow AM; Bates JE; Furche F; Eshuis H J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901 [TBL] [Abstract][Full Text] [Related]
10. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. Ren X; Tkatchenko A; Rinke P; Scheffler M Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551 [TBL] [Abstract][Full Text] [Related]
11. The exchange-correlation potential in ab initio density functional theory. Bartlett RJ; Grabowski I; Hirata S; Ivanov S J Chem Phys; 2005 Jan; 122(3):34104. PubMed ID: 15740189 [TBL] [Abstract][Full Text] [Related]
13. Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework. Delesma FA; Leucke M; Golze D; Rinke P J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38205851 [TBL] [Abstract][Full Text] [Related]
14. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond. Verma P; Bartlett RJ J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859 [TBL] [Abstract][Full Text] [Related]
15. Configuration interaction singles based on the real-space numerical grid method: Kohn-Sham versus Hartree-Fock orbitals. Kim J; Hong K; Choi S; Hwang SY; Youn Kim W Phys Chem Chem Phys; 2015 Dec; 17(47):31434-43. PubMed ID: 25869540 [TBL] [Abstract][Full Text] [Related]
16. Explicitly correlated coupled-cluster theory using cusp conditions. I. Perturbation analysis of coupled-cluster singles and doubles (CCSD-F12). Köhn A; Tew DP J Chem Phys; 2010 Nov; 133(17):174117. PubMed ID: 21054016 [TBL] [Abstract][Full Text] [Related]
17. Analytical Second-Order Properties for the Random Phase Approximation: Nuclear Magnetic Resonance Shieldings. Drontschenko V; Bangerter FH; Ochsenfeld C J Chem Theory Comput; 2023 Nov; 19(21):7542-7554. PubMed ID: 37863033 [TBL] [Abstract][Full Text] [Related]
19. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds. Garza J; Ramírez JZ; Vargas R J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391 [TBL] [Abstract][Full Text] [Related]
20. External coupled-cluster perturbation theory: description and application to weakly interaction dimers. Corrections to the random phase approximation. Lotrich V; Bartlett RJ J Chem Phys; 2011 May; 134(18):184108. PubMed ID: 21568498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]