These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37774440)

  • 1. An Euler-Bernoulli-type beam model of the vocal folds for describing curved and incomplete glottal closure patterns.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    J Mech Behav Biomed Mater; 2023 Nov; 147():106130. PubMed ID: 37774440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Euler-Bernoulli-Type Beam Model of the Vocal Folds for Describing Curved and Incomplete Glottal Closure Patterns.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    ArXiv; 2023 Jul; ():. PubMed ID: 37461411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular control of fundamental frequency and glottal posture at phonation onset.
    Chhetri DK; Neubauer J; Berry DA
    J Acoust Soc Am; 2012 Feb; 131(2):1401-12. PubMed ID: 22352513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Pre-phonatory Glottal Shape by Intrinsic Laryngeal Muscles.
    Pillutla P; Reddy NK; Schlegel P; Zhang Z; Chhetri DK
    Laryngoscope; 2023 Jul; 133(7):1690-1697. PubMed ID: 36129162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THE ROLE OF THE THYROARYTENOID MUSCLE IN REGULATING GLOTTAL AIRFLOW AND GLOTTAL CLOSURE IN AN IN VIVO CANINE LARYNX MODEL.
    Luegmair G; Chhetri DK; Zhang Z
    Proc Meet Acoust; 2014 Oct; 22():. PubMed ID: 34900082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential roles for the thyroarytenoid and lateral cricoarytenoid muscles in phonation.
    Chhetri DK; Neubauer J
    Laryngoscope; 2015 Dec; 125(12):2772-7. PubMed ID: 26198167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject.
    Laukkanen AM; Titze IR; Hoffman H; Finnegan E
    Folia Phoniatr Logop; 2008; 60(6):298-311. PubMed ID: 19011306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restraining mechanisms in regulating glottal closure during phonation.
    Zhang Z
    J Acoust Soc Am; 2011 Dec; 130(6):4010-9. PubMed ID: 22225055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adduction arytenopexy: a new procedure for paralytic dysphonia with implications for implant medialization.
    Zeitels SM; Hochman I; Hillman RE
    Ann Otol Rhinol Laryngol Suppl; 1998 Sep; 173():2-24. PubMed ID: 9750545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical laryngeal model of voice F0 and glottal width control.
    Farley GR
    J Acoust Soc Am; 1996 Dec; 100(6):3794-812. PubMed ID: 8969481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control.
    Chhetri DK; Neubauer J; Sofer E; Berry DA
    J Acoust Soc Am; 2014 Apr; 135(4):2052-64. PubMed ID: 25235003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies.
    Yin J; Zhang Z
    J Biomech Eng; 2014 Nov; 136(11):1110061-11100610. PubMed ID: 25162438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Reconstruction of Phonatory Glottal Shape and Volume: Effects of Neuromuscular Activation.
    Reddy NK; Schlegel P; Lee Y; Chhetri DK
    Laryngoscope; 2023 Feb; 133(2):357-365. PubMed ID: 35633189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
    Galindo GE; Peterson SD; Erath BD; Castro C; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2017 Sep; 60(9):2452-2471. PubMed ID: 28837719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.