These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37774440)

  • 21. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
    Chhetri DK; Park SJ
    Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pediatric high speed digital imaging of vocal fold vibration: a normative pilot study of glottal closure and phase closure characteristics.
    Patel RR; Dixon A; Richmond A; Donohue KD
    Int J Pediatr Otorhinolaryngol; 2012 Jul; 76(7):954-9. PubMed ID: 22445799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triangular body-cover model of the vocal folds with coordinated activation of the five intrinsic laryngeal muscles.
    Alzamendi GA; Peterson SD; Erath BD; Hillman RE; Zañartu M
    J Acoust Soc Am; 2022 Jan; 151(1):17. PubMed ID: 35105008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.
    Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P
    Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Function of the interarytenoid(IA) muscle in phonation: in vivo laryngeal model.
    Choi HS; Ye M; Berke GS
    Yonsei Med J; 1995 Mar; 36(1):58-67. PubMed ID: 7740837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Digital Videokymography: Analysis of Glottal Closure in Adults.
    Nogueira do Nascimento U; Santos MAR; Gama ACC
    J Voice; 2024 Jan; 38(1):18-24. PubMed ID: 34417083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of the HRES 5562 Camera Using the HSDI Technique in the Diagnosis of Glottal Insufficiencies in Teachers.
    Kosztyła-Hojna B; Zdrojkowski M; Duchnowska E
    J Voice; 2022 Jul; 36(4):563-569. PubMed ID: 32807589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics.
    Movahhedi M; Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Jul; 150(1):29. PubMed ID: 34340476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hirano's cover-body model and its unique laryngeal postures revisited.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2018 Jun; 128(6):1412-1418. PubMed ID: 29152744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in glottal configuration in women after loud talking.
    Linville SE
    J Voice; 1995 Mar; 9(1):57-65. PubMed ID: 7757151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glottal adjustment for regulating vocal intensity. An experimental study.
    Tanaka S; Tanabe M
    Acta Otolaryngol; 1986; 102(3-4):315-24. PubMed ID: 3776526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histologic Examination of Vocal Fold Mucosal Wave and Vibration.
    Chung HR; Reddy NK; Manzoor D; Schlegel P; Zhang Z; Chhetri DK
    Laryngoscope; 2024 Jan; 134(1):264-271. PubMed ID: 37522475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in Glottal Closure and Visibility of the Anterior Commissure during Rigid-90°, Rigid-70°, and Flexible Laryngostroboscopy.
    Paulus R; Leonhard M; Ho GY; Kurz A; Schneider-Stickler B
    Folia Phoniatr Logop; 2023; 75(5):324-333. PubMed ID: 37004509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.