These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37774736)

  • 1. Running Critical Power: A Comparison Of Different Theoretical Models.
    Ruiz-Alias SA; Ñancupil-Andrade AA; Pérez-Castilla A; García-Pinillos F
    Int J Sports Med; 2023 Dec; 44(13):969-975. PubMed ID: 37774736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can we predict long-duration running power output? A matter of selecting the appropriate predicting trials and empirical model.
    Ruiz-Alias SA; Ñancupil-Andrade AA; Pérez-Castilla A; García-Pinillos F
    Eur J Appl Physiol; 2023 Oct; 123(10):2283-2294. PubMed ID: 37272943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can We Predict Long-Duration Running Power Output? Validity of the Critical Power, Power Law, and Logarithmic Models.
    Ruiz-Alias SA; Ñancupil-Andrade AA; Pérez-Castilla A; García-Pinillos F
    J Strength Cond Res; 2024 Feb; 38(2):306-310. PubMed ID: 37847189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y; Miura A; Endo M; Kan A; Yanagawa K; Whipp BJ
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can We Accurately Predict Critical Power and W' from a Single Ramp Incremental Exercise Test?
    Caen K; Bourgois JG; Stuer L; Mermans V; Boone J
    Med Sci Sports Exerc; 2023 Aug; 55(8):1401-1408. PubMed ID: 36924332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical power: How different protocols and models affect its determination.
    Mattioni Maturana F; Fontana FY; Pogliaghi S; Passfield L; Murias JM
    J Sci Med Sport; 2018 Jul; 21(7):742-747. PubMed ID: 29203319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J; de Souza KM; de Lucas RD; Guglielmo LG; Greco CC; Denadai BS
    PLoS One; 2015; 10(9):e0138428. PubMed ID: 26407169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodological Approaches and Related Challenges Associated With the Determination of Critical Power and Curvature Constant.
    Muniz-Pumares D; Karsten B; Triska C; Glaister M
    J Strength Cond Res; 2019 Feb; 33(2):584-596. PubMed ID: 30531413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Half-Marathon Power Target using the 9/3-Minute Running Critical Power Test.
    Olaya-Cuartero J; Pueo B; Villalon-Gasch L; Jiménez-Olmedo JM
    J Sports Sci Med; 2023 Sep; 22(3):526-531. PubMed ID: 37711711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between anaerobic parameters provided from MAOD and critical power model in specific table tennis test.
    Zagatto AM; Gobatto CA
    Int J Sports Med; 2012 Aug; 33(8):613-20. PubMed ID: 22562729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of initial metabolic rate on the power-duration relationship for all-out exercise.
    Parker Simpson L; Jones AM; Vanhatalo A; Wilkerson DP
    Eur J Appl Physiol; 2012 Jul; 112(7):2467-73. PubMed ID: 22052102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of prior sprint exercise on the parameters of the 'all-out critical power test' in men.
    Vanhatalo A; Jones AM
    Exp Physiol; 2009 Feb; 94(2):255-63. PubMed ID: 18996948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 3-min all-out test is valid for determining critical power but not anaerobic work capacity in tethered running.
    Gama MCT; Dos Reis IGM; Sousa FAB; Gobatto CA
    PLoS One; 2018; 13(2):e0192552. PubMed ID: 29444141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.