BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37774873)

  • 1. The relative dominance of surface oxygen content over pore properties in controlling adsorption and retrograde behavior of gaseous toluene over microporous carbon.
    Liu L; Ahmadi Y; Kim KH; Kukkar D; Szulejko JE
    Sci Total Environ; 2024 Jan; 906():167308. PubMed ID: 37774873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retrograde adsorption phenomenon at the onset of breakthrough and its quantitation: An experimental case study for gaseous toluene on activated carbon surface.
    Vikrant K; Kim KH; Szulejko JE
    Environ Res; 2019 Nov; 178():108737. PubMed ID: 31539820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).
    Balanay JA; Crawford SA; Lungu CT
    J Occup Environ Hyg; 2011 Oct; 8(10):573-9. PubMed ID: 21936696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of activated carbon fiber adsorption capacity for several common organic vapors: applications for respiratory protection.
    Summers M; Oh J; Lungu CT
    J Air Waste Manag Assoc; 2022 Jun; 72(6):570-580. PubMed ID: 34569912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.
    Balanay JA; Floyd EL; Lungu CT
    Ann Occup Hyg; 2015 May; 59(4):481-90. PubMed ID: 25528579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient strategy for the enhancement of adsorptivity of microporous carbons against gaseous formaldehyde: Surface modification with aminosilane adducts.
    Vikrant K; Lim DH; Younis SA; Kim KH
    Sci Total Environ; 2020 Nov; 743():140761. PubMed ID: 32659563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.
    Balanay JA; Bartolucci AA; Lungu CT
    J Occup Environ Hyg; 2014; 11(3):133-43. PubMed ID: 24521063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-particle two-phase adsorption of toluene and ultrafine particles on activated carbon studied by molecular simulation.
    Sheng Y; Wang M; Dong Q
    Sci Total Environ; 2023 Sep; 891():164591. PubMed ID: 37277031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption Characteristics of Activated Carbon Fibers in Respirator Cartridges for Toluene.
    Balanay JAG; Oh J
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CuO-modified activated carbon for the improvement of toluene removal in air.
    Lei B; Liu B; Zhang H; Yan L; Xie H; Zhou G
    J Environ Sci (China); 2020 Feb; 88():122-132. PubMed ID: 31862054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for the enhancement of trapping efficiency of gaseous benzene on activated carbon (AC) through modification of their surface functionalities.
    Kim WK; Younis SA; Kim KH
    Environ Pollut; 2021 Feb; 270():116239. PubMed ID: 33341551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of activated carbon surface properties on the adsorption of volatile organic compounds.
    Li L; Sun Z; Li H; Keener TC
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1196-202. PubMed ID: 23155865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance gas-phase adsorption of benzene and toluene on activated carbon: response surface optimization, reusability, equilibrium, kinetic, and competitive adsorption studies.
    Baytar O; Şahin Ö; Horoz S; Kutluay S
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26191-26210. PubMed ID: 32361973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling trace organic contaminant adsorption capacity by granular activated carbon.
    Corwin CJ; Summers RS
    Environ Sci Technol; 2010 Jul; 44(14):5403-8. PubMed ID: 20560652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into hierarchical pore size and level of concentration in efficient removal of toluene vapor by activated carbon.
    Liu X; Zhu H; Gong L; Jiang L; Lin D; Yang K
    Sci Total Environ; 2022 Dec; 853():158719. PubMed ID: 36108850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor.
    Mohan N; Kannan GK; Upendra S; Subha R; Kumar NS
    J Hazard Mater; 2009 Sep; 168(2-3):777-81. PubMed ID: 19369003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.
    Gangupomu RH; Sattler ML; Ramirez D
    J Hazard Mater; 2016 Jan; 302():362-374. PubMed ID: 26476807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of N-doped hierarchical porous carbon with excellent toluene adsorption properties and its activation mechanism.
    Lu S; Huang X; Tang M; Peng Y; Wang S; Makwarimba CP
    Environ Pollut; 2021 Sep; 284():117113. PubMed ID: 33892463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies.
    Zuo L; Ai J; Fu H; Chen W; Zheng S; Xu Z; Zhu D
    Environ Pollut; 2016 Apr; 211():425-34. PubMed ID: 26802515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of 3,4-diaminobenzophenone-functionalized magnetic nanoadsorbent with enhanced VOC adsorption and desorption capacity.
    Şahin Ö; Kutluay S; Horoz S; Ece MŞ
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5231-5253. PubMed ID: 32964387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.