BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37775089)

  • 1. Facile Photopatterning of Perfusable Microchannels in Synthetic Hydrogels to Recreate Microphysiological Environments.
    Mora-Boza A; Mulero-Russe A; Caprio ND; Burdick JA; Singh A; García AJ
    Adv Mater; 2023 Dec; 35(52):e2306765. PubMed ID: 37775089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential assembly of 3D perfusable microfluidic hydrogels.
    He J; Zhu L; Liu Y; Li D; Jin Z
    J Mater Sci Mater Med; 2014 Nov; 25(11):2491-500. PubMed ID: 25027302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Standing Photo-Crosslinked Hydrogel Construct: in vitro Microphysiological Vascular Model.
    Manigandan A; Amruthavarshini R P; Sethuraman S; Subramanian A
    Cells Tissues Organs; 2022; 211(3):335-347. PubMed ID: 34058730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
    Xie R; Zheng W; Guan L; Ai Y; Liang Q
    Small; 2020 Apr; 16(15):e1902838. PubMed ID: 31559675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering.
    Sousa CFV; Saraiva CA; Correia TR; Pesqueira T; Patrício SG; Rial-Hermida MI; Borges J; Mano JF
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical spring template fabrication of cell-laden microfluidic hydrogels for tissue engineering.
    Huang G; Wang S; He X; Zhang X; Lu TJ; Xu F
    Biotechnol Bioeng; 2013 Mar; 110(3):980-9. PubMed ID: 23097012
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Kageyama T; Osaki T; Enomoto J; Myasnikova D; Nittami T; Hozumi T; Ito T; Fukuda J
    ACS Biomater Sci Eng; 2016 Jun; 2(6):1059-1066. PubMed ID: 33429513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and Facile Light-Based Approach to Fabricate Protease-Degradable Poly(ethylene glycol)-norbornene Microgels for Cell Encapsulation.
    Mora-Boza A; Ghebrezadik SG; Leisen JE; García AJ
    Adv Healthc Mater; 2023 Oct; 12(26):e2300942. PubMed ID: 37235850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.
    Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J
    Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogels for Engineering of Perfusable Vascular Networks.
    Liu J; Zheng H; Poh PS; Machens HG; Schilling AF
    Int J Mol Sci; 2015 Jul; 16(7):15997-6016. PubMed ID: 26184185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis of Rapidly Degrading PEG-Based Thiol-Norbornene Hydrogels.
    Lin FY; Lin CC
    ACS Macro Lett; 2021 Mar; 10(3):341-345. PubMed ID: 35549061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules.
    Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T
    Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment.
    Shimazu Y; Zhang B; Yue Z; Wallace GG; Fukuda J
    J Biosci Bioeng; 2019 Jan; 127(1):114-120. PubMed ID: 30072116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of hydrogels in 3D-printed microchannels.
    Kim YT; Bohjanen S; Bhattacharjee N; Folch A
    Lab Chip; 2019 Sep; 19(18):3086-3093. PubMed ID: 31502633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering.
    Pereira RF; Barrias CC; Bártolo PJ; Granja PL
    Acta Biomater; 2018 Jan; 66():282-293. PubMed ID: 29128530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.