These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37775147)

  • 1. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.
    Zhang G; Luo Y; Dai X; Dai Z
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37775147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking CRISPR on-target sgRNA design.
    Yan J; Chuai G; Zhou C; Zhu C; Yang J; Zhang C; Gu F; Xu H; Wei J; Liu Q
    Brief Bioinform; 2018 Jul; 19(4):721-724. PubMed ID: 28203699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System.
    Niu R; Peng J; Zhang Z; Shang X
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prediction of CRISPR/Cas9 off-target activity using multi-scale convolutional neural network].
    Xie H; Huang L; Luo Y; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):858-876. PubMed ID: 38545983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In silico CRISPR-based sgRNA design].
    Wang Y; Chuai G; Yan J; Shi L; Liu Q
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1744-1756. PubMed ID: 29082722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Apr; 50(7):3616-3637. PubMed ID: 35349718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.
    Sun J; Guo J; Liu J
    PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT.
    Luo Y; Chen Y; Xie H; Zhu W; Zhang G
    Comput Biol Med; 2024 Feb; 169():107932. PubMed ID: 38199209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design.
    Chuai GH; Wang QL; Liu Q
    Trends Biotechnol; 2017 Jan; 35(1):12-21. PubMed ID: 27418421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
    Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z
    Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of CRISPR/Cas9 sgRNA Design Tools.
    Cui Y; Xu J; Cheng M; Liao X; Peng S
    Interdiscip Sci; 2018 Jun; 10(2):455-465. PubMed ID: 29644494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system.
    Yang Z; Zhang Z; Li J; Chen W; Liu C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking and integrating genome-wide CRISPR off-target detection and prediction.
    Yan J; Xue D; Chuai G; Gao Y; Zhang G; Liu Q
    Nucleic Acids Res; 2020 Nov; 48(20):11370-11379. PubMed ID: 33137817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional editing of the
    Wang BZ; Zhang C; Zhang JL; Sun J
    Yi Chuan; 2023 Jul; 45(7):593-601. PubMed ID: 37503583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic review of computational methods for designing efficient guides for CRISPR DNA base editor systems.
    Giner G; Ikram S; Herold MJ; Papenfuss AT
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.