These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37775302)

  • 1. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
    Pastras CJ; Curthoys IS; Asadnia M; McAlpine D; Rabbitt RD; Brown DJ
    J Neurosci; 2023 Oct; 43(43):7149-7157. PubMed ID: 37775302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonquantal transmission at the vestibular hair cell-calyx synapse: K
    Govindaraju AC; Quraishi IH; Lysakowski A; Eatock RA; Raphael RM
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2207466120. PubMed ID: 36595693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista.
    Holt JC; Chatlani S; Lysakowski A; Goldberg JM
    J Neurophysiol; 2007 Sep; 98(3):1083-101. PubMed ID: 17596419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses.
    Highstein SM; Holstein GR; Mann MA; Rabbitt RD
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5421-6. PubMed ID: 24706862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning and timing in mammalian type I hair cells and calyceal synapses.
    Songer JE; Eatock RA
    J Neurosci; 2013 Feb; 33(8):3706-24. PubMed ID: 23426697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic transmission at the vestibular hair cells of amniotes.
    Mukhopadhyay M; Pangrsic T
    Mol Cell Neurosci; 2022 Jul; 121():103749. PubMed ID: 35667549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli.
    Pastras CJ; Curthoys IS
    Audiol Res; 2023 Nov; 13(6):910-928. PubMed ID: 37987337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission between type II hair cells and bouton afferents in the turtle posterior crista.
    Holt JC; Xue JT; Brichta AM; Goldberg JM
    J Neurophysiol; 2006 Jan; 95(1):428-52. PubMed ID: 16177177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of K
    Contini D; Price SD; Art JJ
    J Physiol; 2017 Feb; 595(3):777-803. PubMed ID: 27633787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using macular velocity measurements to relate parameters of bone conduction to vestibular compound action potential responses.
    Pastras CJ; Curthoys IS; Rabbitt RD; Brown DJ
    Sci Rep; 2023 Jun; 13(1):10204. PubMed ID: 37353559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specializations for Fast Signaling in the Amniote Vestibular Inner Ear.
    Eatock RA
    Integr Comp Biol; 2018 Aug; 58(2):341-350. PubMed ID: 29920589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K
    Spaiardi P; Tavazzani E; Manca M; Russo G; Prigioni I; Biella G; Giunta R; Johnson SL; Marcotti W; Masetto S
    Neuroscience; 2020 Feb; 426():69-86. PubMed ID: 31846752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of hyperpolarization-activated current (
    Meredith FL; Vu TA; Gehrke B; Benke TA; Dondzillo A; Rennie KJ
    J Neurophysiol; 2023 Jun; 129(6):1468-1481. PubMed ID: 37198134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending.
    Goldberg JM
    J Neurophysiol; 1996 Sep; 76(3):1942-57. PubMed ID: 8890305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanoelectrical and voltage-gated ion channels in mammalian vestibular hair cells.
    Eatock RA; Hurley KM; Vollrath MA
    Audiol Neurootol; 2002; 7(1):31-5. PubMed ID: 11914523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
    Contini D; Holstein GR; Art JJ
    J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.
    Contini D; Zampini V; Tavazzani E; Magistretti J; Russo G; Prigioni I; Masetto S
    Neuroscience; 2012 Dec; 227():232-46. PubMed ID: 23032932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse.
    Bonsacquet J; Brugeaud A; Compan V; Desmadryl G; Chabbert C
    J Physiol; 2006 Oct; 576(Pt 1):63-71. PubMed ID: 16887871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.
    Highstein SM; Mann MA; Holstein GR; Rabbitt RD
    J Neurophysiol; 2015 Jun; 113(10):3827-35. PubMed ID: 25878150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.