BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37775302)

  • 1. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
    Pastras CJ; Curthoys IS; Asadnia M; McAlpine D; Rabbitt RD; Brown DJ
    J Neurosci; 2023 Oct; 43(43):7149-7157. PubMed ID: 37775302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonquantal transmission at the vestibular hair cell-calyx synapse: K
    Govindaraju AC; Quraishi IH; Lysakowski A; Eatock RA; Raphael RM
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2207466120. PubMed ID: 36595693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista.
    Holt JC; Chatlani S; Lysakowski A; Goldberg JM
    J Neurophysiol; 2007 Sep; 98(3):1083-101. PubMed ID: 17596419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses.
    Highstein SM; Holstein GR; Mann MA; Rabbitt RD
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5421-6. PubMed ID: 24706862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning and timing in mammalian type I hair cells and calyceal synapses.
    Songer JE; Eatock RA
    J Neurosci; 2013 Feb; 33(8):3706-24. PubMed ID: 23426697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic transmission at the vestibular hair cells of amniotes.
    Mukhopadhyay M; Pangrsic T
    Mol Cell Neurosci; 2022 Jul; 121():103749. PubMed ID: 35667549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli.
    Pastras CJ; Curthoys IS
    Audiol Res; 2023 Nov; 13(6):910-928. PubMed ID: 37987337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission between type II hair cells and bouton afferents in the turtle posterior crista.
    Holt JC; Xue JT; Brichta AM; Goldberg JM
    J Neurophysiol; 2006 Jan; 95(1):428-52. PubMed ID: 16177177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of K
    Contini D; Price SD; Art JJ
    J Physiol; 2017 Feb; 595(3):777-803. PubMed ID: 27633787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using macular velocity measurements to relate parameters of bone conduction to vestibular compound action potential responses.
    Pastras CJ; Curthoys IS; Rabbitt RD; Brown DJ
    Sci Rep; 2023 Jun; 13(1):10204. PubMed ID: 37353559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specializations for Fast Signaling in the Amniote Vestibular Inner Ear.
    Eatock RA
    Integr Comp Biol; 2018 Aug; 58(2):341-350. PubMed ID: 29920589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K
    Spaiardi P; Tavazzani E; Manca M; Russo G; Prigioni I; Biella G; Giunta R; Johnson SL; Marcotti W; Masetto S
    Neuroscience; 2020 Feb; 426():69-86. PubMed ID: 31846752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of hyperpolarization-activated current (
    Meredith FL; Vu TA; Gehrke B; Benke TA; Dondzillo A; Rennie KJ
    J Neurophysiol; 2023 Jun; 129(6):1468-1481. PubMed ID: 37198134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending.
    Goldberg JM
    J Neurophysiol; 1996 Sep; 76(3):1942-57. PubMed ID: 8890305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanoelectrical and voltage-gated ion channels in mammalian vestibular hair cells.
    Eatock RA; Hurley KM; Vollrath MA
    Audiol Neurootol; 2002; 7(1):31-5. PubMed ID: 11914523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
    Contini D; Holstein GR; Art JJ
    J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.
    Contini D; Zampini V; Tavazzani E; Magistretti J; Russo G; Prigioni I; Masetto S
    Neuroscience; 2012 Dec; 227():232-46. PubMed ID: 23032932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse.
    Bonsacquet J; Brugeaud A; Compan V; Desmadryl G; Chabbert C
    J Physiol; 2006 Oct; 576(Pt 1):63-71. PubMed ID: 16887871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.
    Highstein SM; Mann MA; Holstein GR; Rabbitt RD
    J Neurophysiol; 2015 Jun; 113(10):3827-35. PubMed ID: 25878150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.