BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37775937)

  • 1. Aggregation-Induced Enhanced Electrochemiluminescence from Tris(bipyridine)ruthenium(II) Derivative Nanosheets for the Ultrasensitive Detection of Human Telomerase RNA.
    Han T; Geng YQ; Zhang M; Cao Y; Zhu JJ
    Small; 2024 Feb; 20(6):e2306291. PubMed ID: 37775937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron Carbon Nitride Nanosheets-Ru Nanocomposite Self-Enhancement Electrochemiluminescence Emitter with a Three-Dimensional DNA Network Structure as a Signal Amplifier for Ultrasensitive Detection of TK1 mRNA.
    Hu J; Zhang Y; Chai Y; Yuan R
    Anal Chem; 2022 Aug; 94(32):11345-11351. PubMed ID: 35917446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2'-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications.
    Gai QQ; Wang DM; Huang RF; Liang XX; Wu HL; Tao XY
    Biosens Bioelectron; 2018 Oct; 118():80-87. PubMed ID: 30056303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Luminescent and Self-Enhanced Electrochemiluminescence of Tris(bipyridine) Ruthenium(II) Nanohybrid and Its Sensing Application for Label-Free Detection of MicroRNA.
    Ye J; Liu G; Yan M; Zhu Q; Zhu L; Huang J; Yang X
    Anal Chem; 2019 Oct; 91(20):13237-13243. PubMed ID: 31525899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine).
    Jian Y; Wang H; Lan F; Liang L; Ren N; Liu H; Ge S; Yu J
    Mikrochim Acta; 2018 Jan; 185(2):133. PubMed ID: 29594608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection.
    Jiang MH; Li SK; Zhong X; Liang WB; Chai YQ; Zhuo Y; Yuan R
    Anal Chem; 2019 Mar; 91(5):3710-3716. PubMed ID: 30724078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive electrochemiluminescent immunosensor for diabetic nephropathy analysis based on tris(bipyridine) ruthenium(II) derivative with binary intramolecular self-catalyzed property.
    Wang H; Chai Y; Li H; Yuan R
    Biosens Bioelectron; 2018 Feb; 100():35-40. PubMed ID: 28858679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple signal-enhanced electrochemiluminescence aptamer sensors based on carboxylated ruthenium (II) complexes for acetamiprid detection.
    Li C; Zhang B; Wu Z; Liu Y; Xu R; Wang Y; Zhang Y; Wei Q
    Anal Chim Acta; 2024 Jun; 1309():342677. PubMed ID: 38772666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets.
    Yan M; Ye J; Zhu Q; Zhu L; Huang J; Yang X
    Anal Chem; 2019 Aug; 91(15):10156-10163. PubMed ID: 31283192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application.
    Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR
    Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemiluminescence immunoassay strategies based on a hexagonal Ru-MOF and MoS
    Ma G; Peng L; Zhang S; Wu K; Deng A; Li J
    Analyst; 2023 Apr; 148(8):1694-1702. PubMed ID: 36916172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemiluminescence resonance energy transfer biosensing platform between g-C
    Yin T; Ye Y; Dong W; Jie G
    Biosens Bioelectron; 2022 Nov; 215():114580. PubMed ID: 35917609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II)/tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA.
    Tang X; Zhao D; He J; Li F; Peng J; Zhang M
    Anal Chem; 2013 Feb; 85(3):1711-8. PubMed ID: 23311854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium(II) Complex-Grafted Hollow Hierarchical Metal-Organic Frameworks with Superior Electrochemiluminescence Performance for Sensitive Assay of Thrombin.
    Huang W; Hu GB; Liang WB; Wang JM; Lu ML; Yuan R; Xiao DR
    Anal Chem; 2021 Apr; 93(15):6239-6245. PubMed ID: 33822576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Off-On"switching electrochemiluminescence biosensor for mercury(II) detection based on molecular recognition technology.
    Cheng L; Wei B; He LL; Mao L; Zhang J; Ceng J; Kong D; Chen C; Cui H; Hong N; Fan H
    Anal Biochem; 2017 Feb; 518():46-52. PubMed ID: 27769898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraphenylethylene-Functionalized Metal-Organic Frameworks with Strong Aggregation-Induced Electrochemiluminescence for Ultrasensitive Analysis through a Multiple Convertible Resonance Energy Transfer System.
    Xiong X; Xiong C; Gao Y; Xiao Y; Chen MM; Wen W; Zhang X; Wang S
    Anal Chem; 2022 Jun; 94(22):7861-7867. PubMed ID: 35603578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive biosensor based on target induced dual signal amplification to electrochemiluminescent nanoneedles of Ru(II) complex.
    Wang H; Song Y; Chai Y; Yuan R
    Biosens Bioelectron; 2019 Sep; 140():111344. PubMed ID: 31150986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stable Ru-complex-based metal-covalent organic frameworks as novel type of electrochemiluminescence emitters for ultrasensitive biosensing.
    Yang Y; Jiang H; Li J; Zhang J; Gao SZ; Lu ML; Zhang XY; Liang W; Zou X; Yuan R; Xiao DR
    Mater Horiz; 2023 Jul; 10(8):3005-3013. PubMed ID: 37194328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Active Electrochemiluminescence of Ruthenium Complex Co-assembled Chalcogenide Nanoclusters and the Application for Label-Free Detection of Alkaline Phosphatase.
    Wang H; Wang F; Wu T; Liu Y
    Anal Chem; 2021 Nov; 93(47):15794-15801. PubMed ID: 34779626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A smartphone-assisted electrochemiluminescent detection of miRNA-21 in situ using Ru(bpy)
    Zheng K; Pan J; Yu Z; Yi C; Li MJ
    Talanta; 2024 Feb; 268(Pt 1):125310. PubMed ID: 37866303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.