These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37775952)

  • 1. Toward Nano-Specific In Silico NAMs: How to Adjust Nano-QSAR to the Recent Advancements of Nanotoxicology?
    Ciura K; Moschini E; Stępnik M; Serchi T; Gutleb A; Jarzyńska K; Jagiello K; Puzyn T
    Small; 2024 Feb; 20(6):e2305581. PubMed ID: 37775952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials.
    Singh AV; Shelar A; Rai M; Laux P; Thakur M; Dosnkyi I; Santomauro G; Singh AK; Luch A; Patil R; Bill J
    J Agric Food Chem; 2024 Feb; 72(6):2835-2852. PubMed ID: 38315814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current situation on the availability of nanostructure-biological activity data.
    Oksel C; Ma CY; Wang XZ
    SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials.
    Buglak AA; Zherdev AV; Dzantiev BB
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
    Oksel C; Ma CY; Liu JJ; Wilkins T; Wang XZ
    Adv Exp Med Biol; 2017; 947():103-142. PubMed ID: 28168667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the development of "nano-QSARs": advances and challenges.
    Puzyn T; Leszczynska D; Leszczynski J
    Small; 2009 Nov; 5(22):2494-509. PubMed ID: 19787675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano(Q)SAR: Challenges, pitfalls and perspectives.
    Tantra R; Oksel C; Puzyn T; Wang J; Robinson KN; Wang XZ; Ma CY; Wilkins T
    Nanotoxicology; 2015; 9(5):636-42. PubMed ID: 25211549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR modeling of nanomaterials.
    Burello E; Worth AP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(3):298-306. PubMed ID: 21384562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of size-dependent electron configuration fingerprint to develop general prediction models for nanomaterials.
    Shin HK; Kim S; Yoon S
    NanoImpact; 2021 Jan; 21():100298. PubMed ID: 35559785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology.
    Bañares MA; Haase A; Tran L; Lobaskin V; Oberdörster G; Rallo R; Leszczynski J; Hoet P; Korenstein R; Hardy B; Puzyn T
    Nanotoxicology; 2017 Sep; 11(7):839-845. PubMed ID: 28885075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Strategies in Assessment of Nanotoxicity: Alternatives to In Vivo Animal Testing.
    Huang HJ; Lee YH; Hsu YH; Liao CT; Lin YF; Chiu HW
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials.
    Petersen EJ; Ceger P; Allen DG; Coyle J; Derk R; Garcia-Reyero N; Gordon J; Kleinstreuer NC; Matheson J; McShan D; Nelson BC; Patri AK; Rice P; Rojanasakul L; Sasidharan A; Scarano L; Chang X
    ALTEX; 2022; 39(2):183–206. PubMed ID: 34874455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
    Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J
    Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across.
    Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T
    Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.