These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37776514)

  • 61. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth.
    Duran BOS; Garcia de la Serrana D; Zanella BTT; Perez ES; Mareco EA; Santos VB; Carvalho RF; Dal-Pai-Silva M
    PLoS One; 2021; 16(7):e0255006. PubMed ID: 34293047
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Higher duplicability of less important genes in yeast genomes.
    He X; Zhang J
    Mol Biol Evol; 2006 Jan; 23(1):144-51. PubMed ID: 16151181
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Automated identification of conserved synteny after whole-genome duplication.
    Catchen JM; Conery JS; Postlethwait JH
    Genome Res; 2009 Aug; 19(8):1497-505. PubMed ID: 19465509
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia.
    Aury JM; Jaillon O; Duret L; Noel B; Jubin C; Porcel BM; Ségurens B; Daubin V; Anthouard V; Aiach N; Arnaiz O; Billaut A; Beisson J; Blanc I; Bouhouche K; Câmara F; Duharcourt S; Guigo R; Gogendeau D; Katinka M; Keller AM; Kissmehl R; Klotz C; Koll F; Le Mouël A; Lepère G; Malinsky S; Nowacki M; Nowak JK; Plattner H; Poulain J; Ruiz F; Serrano V; Zagulski M; Dessen P; Bétermier M; Weissenbach J; Scarpelli C; Schächter V; Sperling L; Meyer E; Cohen J; Wincker P
    Nature; 2006 Nov; 444(7116):171-8. PubMed ID: 17086204
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Protein connectivity and protein complexity promotes human gene duplicability in a mutually exclusive manner.
    Bhattacharya T; Ghosh TC
    DNA Res; 2010 Oct; 17(5):261-70. PubMed ID: 20829394
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evolutionary consequences of a large duplication event in Trypanosoma brucei: chromosomes 4 and 8 are partial duplicons.
    Jackson AP
    BMC Genomics; 2007 Nov; 8():432. PubMed ID: 18036214
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.
    Jiang WK; Liu YL; Xia EH; Gao LZ
    Plant Physiol; 2013 Apr; 161(4):1844-61. PubMed ID: 23396833
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.
    Lappin FM; Shaw RL; Macqueen DJ
    Mar Genomics; 2016 Dec; 30():15-26. PubMed ID: 27346185
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans.
    Katju V; Farslow JC; Bergthorsson U
    Genome Biol; 2009; 10(7):R75. PubMed ID: 19594930
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms.
    Roth C; Rastogi S; Arvestad L; Dittmar K; Light S; Ekman D; Liberles DA
    J Exp Zool B Mol Dev Evol; 2007 Jan; 308(1):58-73. PubMed ID: 16838295
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina.
    Mattenberger F; Sabater-Muñoz B; Toft C; Sablok G; Fares MA
    DNA Res; 2017 Dec; 24(6):559-570. PubMed ID: 28633360
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gene dosage balance in cellular pathways: implications for dominance and gene duplicability.
    Veitia RA
    Genetics; 2004 Sep; 168(1):569-74. PubMed ID: 15454568
    [No Abstract]   [Full Text] [Related]  

  • 75. Subfunctionalization reduces the fitness cost of gene duplication in humans by buffering dosage imbalances.
    Fernández A; Tzeng YH; Hsu SB
    BMC Genomics; 2011 Dec; 12():604. PubMed ID: 22168623
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The divergence of alternative splicing between ohnologs in teleost fishes.
    Wang Y; Guo B
    BMC Ecol Evol; 2021 May; 21(1):98. PubMed ID: 34034651
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Functional analysis of gene duplications in Saccharomyces cerevisiae.
    Guan Y; Dunham MJ; Troyanskaya OG
    Genetics; 2007 Feb; 175(2):933-43. PubMed ID: 17151249
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evolution of the RNA
    Miao Z; Zhang T; Qi Y; Song J; Han Z; Ma C
    Plant Physiol; 2020 Jan; 182(1):345-360. PubMed ID: 31409695
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Do disparate mechanisms of duplication add similar genes to the genome?
    Davis JC; Petrov DA
    Trends Genet; 2005 Oct; 21(10):548-51. PubMed ID: 16098632
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.