These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37776705)
1. A three-dimensional gold nanoparticles spherical liquid array for SERS sensitive detection of pesticide residues in apple. Wei Q; Pan C; Wang T; Pu H; Sun DW Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123357. PubMed ID: 37776705 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive SERS detection of pesticide residues based on multi-hotspot buckypaper modified with gold nanoparticles. Duan L; Liu X; Meng X; Qu L Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123665. PubMed ID: 38029600 [TBL] [Abstract][Full Text] [Related]
3. Ag NPs@PDMS nanoripple array films as SERS substrates for rapid in situ detection of pesticide residues. Li X; Li L; Wang Y; Hao X; Wang C; Yang Z; Li H Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122877. PubMed ID: 37209479 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles. Zhu C; Liu D; Yan M; Xu G; Zhai H; Luo J; Wang G; Jiang D; Yuan Y J Colloid Interface Sci; 2022 Feb; 608(Pt 2):2111-2119. PubMed ID: 34752981 [TBL] [Abstract][Full Text] [Related]
5. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Sridhar K; Inbaraj BS; Chen BH Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615 [TBL] [Abstract][Full Text] [Related]
6. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application. Wang JF; Wu XZ; Xiao R; Dong PT; Wang CG PLoS One; 2014; 9(6):e97976. PubMed ID: 24886913 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Xie T; Cao Z; Li Y; Li Z; Zhang FL; Gu Y; Han C; Yang G; Qu L Food Chem; 2022 Jul; 381():132208. PubMed ID: 35123223 [TBL] [Abstract][Full Text] [Related]
8. Research on a three-dimensional SERS substrate based on a CNTs/Ag@Au/SiO Sun C; Wang L; Guo N; Hu R; Ye L; Hu Z; Ding J Anal Methods; 2023 Sep; 15(35):4494-4505. PubMed ID: 37610266 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. Wen P; Yang F; Ge C; Li S; Xu Y; Chen L Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34161934 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering. Xu Y; Wu Y; Wei J; Zhao Y; Xue P Anal Methods; 2024 May; 16(18):2888-2896. PubMed ID: 38646710 [TBL] [Abstract][Full Text] [Related]
11. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles. Zhang C; Chen S; Jiang Z; Shi Z; Wang J; Du L ACS Appl Mater Interfaces; 2021 Jun; 13(24):29222-29229. PubMed ID: 34115481 [TBL] [Abstract][Full Text] [Related]
12. Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS Lu Z; Si H; Li Z; Yu J; Liu Y; Feng D; Zhang C; Yang W; Man B; Jiang S Opt Express; 2018 Aug; 26(17):21626-21641. PubMed ID: 30130866 [TBL] [Abstract][Full Text] [Related]
13. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705 [TBL] [Abstract][Full Text] [Related]
14. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy. Du S; Su M; Jiang Y; Yu F; Xu Y; Lou X; Yu T; Liu H ACS Sens; 2019 Jul; 4(7):1798-1805. PubMed ID: 31251024 [TBL] [Abstract][Full Text] [Related]
15. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Hu B; Sun DW; Pu H; Wei Q Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854 [TBL] [Abstract][Full Text] [Related]
16. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
17. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection. Geng ZQ; Zheng JJ; Li YP; Chen Y; Wang P; Han CQ; Yang GH; Qu LL Talanta; 2020 Dec; 220():121340. PubMed ID: 32928387 [TBL] [Abstract][Full Text] [Related]
18. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135 [TBL] [Abstract][Full Text] [Related]
19. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection. Chen S; Li Q; Tian D; Ke P; Yang X; Wu Q; Chen J; Hu C; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121030. PubMed ID: 35189488 [TBL] [Abstract][Full Text] [Related]
20. Self-Healing Plasmonic Metal Liquid as a Quantitative Surface-Enhanced Raman Scattering Analyzer in Two-Liquid-Phase Systems. Su M; Li X; Zhang S; Yu F; Tian L; Jiang Y; Liu H Anal Chem; 2019 Feb; 91(3):2288-2295. PubMed ID: 30615424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]