BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37777339)

  • 1. Nrf2 protein in melanoma progression, as a new means of treatment.
    Feng Q; Xu X; Zhang S
    Pigment Cell Melanoma Res; 2024 Mar; 37(2):247-258. PubMed ID: 37777339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nrf2-Keap1 pathway-mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide-treated rheumatoid arthritis fibroblast-like synoviocytes.
    Zhang Y; Wang G; Wang T; Cao W; Zhang L; Chen X
    Ann N Y Acad Sci; 2019 Dec; 1457(1):166-178. PubMed ID: 31475364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells.
    Georgiou-Siafis SK; Tsiftsoglou AS
    Biochem Pharmacol; 2020 May; 175():113900. PubMed ID: 32156661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dual role of Nrf2 in melanoma: a systematic review.
    Malakoutikhah Z; Mohajeri Z; Dana N; Haghjooy Javanmard S
    BMC Mol Cell Biol; 2023 Feb; 24(1):5. PubMed ID: 36747120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis.
    Sun X; Zuo H; Liu C; Yang Y
    Int J Mol Med; 2016 Oct; 38(4):1303-11. PubMed ID: 27573160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway by curcumin enhances the anti-oxidative capacity of corneal endothelial cells.
    Guo SP; Chang HC; Lu LS; Liu DZ; Wang TJ
    Biomed Pharmacother; 2021 Sep; 141():111834. PubMed ID: 34153850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis.
    Tian H; Zhang D; Gao Z; Li H; Zhang B; Zhang Q; Li L; Cheng Q; Pei D; Zheng J
    Cancer Gene Ther; 2014 Oct; 21(10):416-26. PubMed ID: 25236495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress.
    Suzuki T; Yamamoto M
    J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NRF2 in human neoplasm: Cancer biology and potential therapeutic target.
    Liu Y; Lang F; Yang C
    Pharmacol Ther; 2021 Jan; 217():107664. PubMed ID: 32810525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusterin protects against Cr(VI)-induced oxidative stress-associated hepatotoxicity by mediating the Akt-Keap1-Nrf2 signaling pathway.
    Ma Y; Li S; Tang S; Ye S; Liang N; Liang Y; Xiao F
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):52289-52301. PubMed ID: 35257348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis.
    Zhou XL; Zhu CY; Wu ZG; Guo X; Zou W
    Oncogene; 2019 May; 38(21):4028-4046. PubMed ID: 30692632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases.
    Dovinova I; Kvandová M; Balis P; Gresova L; Majzunova M; Horakova L; Chan JY; Barancik M
    Physiol Res; 2020 Dec; 69(Suppl 4):S541-S553. PubMed ID: 33656904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases.
    Guo Z; Mo Z
    J Tissue Eng Regen Med; 2020 Jun; 14(6):869-883. PubMed ID: 32336035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress.
    Habib E; Linher-Melville K; Lin HX; Singh G
    Redox Biol; 2015 Aug; 5():33-42. PubMed ID: 25827424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular Modulators of the NRF2/KEAP1 Signaling Pathway in Prostate Cancer.
    Tossetta G; Fantone S; Marzioni D; Mazzucchelli R
    Front Biosci (Landmark Ed); 2023 Jul; 28(7):143. PubMed ID: 37525922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miconazole Contributes to NRF2 Activation by Noncanonical P62-KEAP1 Pathway in Bladder Cancer Cells.
    Tsai TF; Chen PC; Lin YC; Chou KY; Chen HE; Ho CY; Lin JF; Hwang TI
    Drug Des Devel Ther; 2020; 14():1209-1218. PubMed ID: 32273683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Keap1-Nrf2 axis in temporal lobe epilepsy-hippocampal sclerosis patients may limit the seizure outcomes.
    Kishore M; Pradeep M; Narne P; Jayalakshmi S; Panigrahi M; Patil A; Babu PP
    Neurol Sci; 2023 Dec; 44(12):4441-4450. PubMed ID: 37432566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of a heterobifunctional degrader of KEAP1.
    Chen H; Nguyen NH; Magtoto CM; Cobbold SA; Bidgood GM; Meza Guzman LG; Richardson LW; Corbin J; Au AE; Lechtenberg BC; Feltham R; Sutherland KD; Grohmann C; Nicholson SE; Sleebs BE
    Redox Biol; 2023 Feb; 59():102552. PubMed ID: 36473314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.