These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37778543)
1. Seagrass meadows as ocean acidification refugia for sea urchin larvae. Ravaglioli C; De Marchi L; Giannessi J; Pretti C; Bulleri F Sci Total Environ; 2024 Jan; 906():167465. PubMed ID: 37778543 [TBL] [Abstract][Full Text] [Related]
2. Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development. Bertucci JI; Juez A; Bellas J Chemosphere; 2022 Aug; 301():134783. PubMed ID: 35504467 [TBL] [Abstract][Full Text] [Related]
3. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [TBL] [Abstract][Full Text] [Related]
4. Transgenerational effects and phenotypic plasticity in sperm and larvae of the sea urchin Paracentrotus lividus under ocean acidification. Marčeta T; Locatello L; Alban S; Hassan MSA; Azmi NNM; Finos L; Badocco D; Marin MG Aquat Toxicol; 2022 Jul; 248():106208. PubMed ID: 35635983 [TBL] [Abstract][Full Text] [Related]
5. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2018 Aug; 139():11-18. PubMed ID: 29751960 [TBL] [Abstract][Full Text] [Related]
6. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. Martin S; Richier S; Pedrotti ML; Dupont S; Castejon C; Gerakis Y; Kerros ME; Oberhänsli F; Teyssié JL; Jeffree R; Gattuso JP J Exp Biol; 2011 Apr; 214(Pt 8):1357-68. PubMed ID: 21430213 [TBL] [Abstract][Full Text] [Related]
7. Investigating intraspecific variability in the biological responses of sea urchins (Paracentrotus lividus) to seawater acidification. Asnicar D; Stranci F; Monti S; Badocco D; Marčeta T; Munari M; Marin MG Environ Sci Pollut Res Int; 2024 Aug; 31(39):51687-51701. PubMed ID: 39120814 [TBL] [Abstract][Full Text] [Related]
8. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO Nogueira P; Gambi MC; Vizzini S; Califano G; Tavares AM; Santos R; Martínez-Crego B Mar Environ Res; 2017 Jun; 127():102-111. PubMed ID: 28413104 [TBL] [Abstract][Full Text] [Related]
9. Increased sensitivity of sea urchin larvae to metal toxicity as a consequence of the past two decades of Climate Change and Ocean Acidification in the Mediterranean Sea. Sartori D; Scatena G; Vrinceanu CA; Gaion A Mar Pollut Bull; 2023 Sep; 194(Pt A):115274. PubMed ID: 37429181 [TBL] [Abstract][Full Text] [Related]
10. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification. Cossa D; Infantes E; Dupont S Sci Total Environ; 2024 Mar; 915():170169. PubMed ID: 38244616 [TBL] [Abstract][Full Text] [Related]
11. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification. García E; Hernández JC; Clemente S Mar Environ Res; 2018 Aug; 139():35-45. PubMed ID: 29753493 [TBL] [Abstract][Full Text] [Related]
12. Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus). Bertucci JI; Bellas J Sci Total Environ; 2021 Aug; 782():146888. PubMed ID: 33848869 [TBL] [Abstract][Full Text] [Related]
13. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Byrne M; Lamare M; Winter D; Dworjanyn SA; Uthicke S Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120439. PubMed ID: 23980242 [TBL] [Abstract][Full Text] [Related]
14. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957 [TBL] [Abstract][Full Text] [Related]
15. Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins. Rodríguez A; Clemente S; Brito A; Hernández JC Mar Environ Res; 2018 Sep; 140():382-389. PubMed ID: 30032994 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis). Chen WY; Lin HC Environ Sci Pollut Res Int; 2018 May; 25(13):12947-12956. PubMed ID: 29478168 [TBL] [Abstract][Full Text] [Related]
17. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Moulin L; Catarino AI; Claessens T; Dubois P Mar Pollut Bull; 2011 Jan; 62(1):48-54. PubMed ID: 20950830 [TBL] [Abstract][Full Text] [Related]
18. Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus. Dorey N; Martin S; Oberhänsli F; Teyssié JL; Jeffree R; Lacoue-Labarthe T J Environ Radioact; 2018 Oct; 190-191():20-30. PubMed ID: 29738950 [TBL] [Abstract][Full Text] [Related]
19. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Lamare MD; Liddy M; Uthicke S Proc Biol Sci; 2016 Nov; 283(1843):. PubMed ID: 27903867 [TBL] [Abstract][Full Text] [Related]
20. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]