These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37778569)

  • 1. Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome.
    Monteiro A; Barreto-Mendes L; Fanchone A; Morgavi DP; Pedreira BC; Magalhães CAS; Abdalla AL; Eugène M
    Sci Total Environ; 2024 Jan; 906():167396. PubMed ID: 37778569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forage peanut legume as a strategy for improving beef production without increasing livestock greenhouse gas emissions.
    Homem BGC; Borges LPC; de Lima IBG; Guimarães BC; Spasiani PP; Ferreira IM; Meo-Filho P; Berndt A; Alves BJR; Urquiaga S; Boddey RM; Casagrande DR
    Animal; 2024 May; 18(5):101158. PubMed ID: 38703756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services.
    Potma Gonçalves DR; Carlos de Moraes Sá J; Mishra U; Ferreira Furlan FJ; Ferreira LA; Inagaki TM; Romaniw J; de Oliveira Ferreira A; Briedis C
    Environ Pollut; 2018 Dec; 243(Pt B):940-952. PubMed ID: 30248602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes.
    Abagandura GO; Şentürklü S; Singh N; Kumar S; Landblom DG; Ringwall K
    PLoS One; 2019; 14(5):e0217069. PubMed ID: 31116765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on GHG emission assessment in agricultural areas in Sri Lanka: the case of Mahaweli H agricultural region.
    Rathnayake H; Mizunoya T
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):88180-88196. PubMed ID: 37436627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenhouse gas balance and mitigation of pasture-based dairy production systems in the Brazilian Atlantic Forest Biome.
    Oliveira PPA; Berndt A; Pedroso AF; Alves TC; Lemes AP; Oliveira BA; Pezzopane JRM; Rodrigues PHM
    Front Vet Sci; 2022; 9():958751. PubMed ID: 36213395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Livestock intensification and environmental sustainability: An analysis based on pasture management scenarios in the brazilian savanna.
    Santos COD; Pinto AS; Santos MPD; Alves BJR; Neto MBR; Ferreira LG
    J Environ Manage; 2024 Mar; 355():120473. PubMed ID: 38430884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse gas balance and carbon footprint of pasture-based beef cattle production systems in the tropical region (Atlantic Forest biome).
    Oliveira PPA; Berndt A; Pedroso AF; Alves TC; Pezzopane JRM; Sakamoto LS; Henrique FL; Rodrigues PHM
    Animal; 2020 Sep; 14(S3):s427-s437. PubMed ID: 32829724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.
    Tribouillois H; Constantin J; Justes E
    Glob Chang Biol; 2018 Jun; 24(6):2513-2529. PubMed ID: 29443447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.
    Torres CMME; Jacovine LAG; Nolasco de Olivera Neto S; Fraisse CW; Soares CPB; de Castro Neto F; Ferreira LR; Zanuncio JC; Lemes PG
    Sci Rep; 2017 Dec; 7(1):16738. PubMed ID: 29196680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greenhouse gas mitigation potential in smallholder agroecosystem of southern Ethiopia.
    Lemma B; Evangelista PH; Stermer M; Young NE; Milne E; Easter M
    J Environ Manage; 2023 Jan; 325(Pt A):116611. PubMed ID: 36419303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrous oxide and methane emissions from soil under integrated farming systems in southern Brazil.
    Amadori C; Dieckow J; Zanatta JA; de Moraes A; Zaman M; Bayer C
    Sci Total Environ; 2022 Jul; 828():154555. PubMed ID: 35296420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agricultural greenhouse gas emissions of an Indian village - Who's to blame: crops or livestock?
    Hemingway C; Vigne M; Aubron C
    Sci Total Environ; 2023 Jan; 856(Pt 2):159145. PubMed ID: 36206896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alfalfa-grass mixtures reduce greenhouse gas emissions and net global warming potential while maintaining yield advantages over monocultures.
    Ghani MU; Kamran M; Ahmad I; Arshad A; Zhang C; Zhu W; Lou S; Hou F
    Sci Total Environ; 2022 Nov; 849():157765. PubMed ID: 35926624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation.
    Zhang J; Tian H; Shi H; Zhang J; Wang X; Pan S; Yang J
    Glob Chang Biol; 2020 Nov; 26(11):6116-6133. PubMed ID: 32697859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agricultural transformation towards delivering deep carbon cuts in China's arid inland areas.
    Zou M; Deng Y; Du T; Kang S
    Environ Int; 2023 Oct; 180():108245. PubMed ID: 37806156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing trees to agricultural lands increases greenhouse gas emission during spring thaw in Canadian agroforestry systems.
    Kwak JH; Lim SS; Baah-Acheamfour M; Choi WJ; Fatemi F; Carlyle CN; Bork EW; Chang SX
    Sci Total Environ; 2019 Feb; 652():800-809. PubMed ID: 30380487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.
    Kasimir Å; He H; Coria J; Nordén A
    Glob Chang Biol; 2018 Aug; 24(8):3302-3316. PubMed ID: 28994230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forage use to improve environmental sustainability of ruminant production.
    Guyader J; Janzen HH; Kroebel R; Beauchemin KA
    J Anim Sci; 2016 Aug; 94(8):3147-3158. PubMed ID: 27695772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.