These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37778597)

  • 1. Global classification models for predicting acute toxicity of chemicals towards Daphnia magna.
    Yu X
    Environ Res; 2023 Dec; 238(Pt 2):117239. PubMed ID: 37778597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationship predicting toxicity of pesticides towards Daphnia magna.
    Chen C; Yang B; Li M; Huang S; Huang X
    Ecotoxicology; 2024 Aug; 33(6):560-568. PubMed ID: 38592644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by Ant Colony Optimization-Support Vector Machine QSTR models.
    Aalizadeh R; von der Ohe PC; Thomaidis NS
    Environ Sci Process Impacts; 2017 Mar; 19(3):438-448. PubMed ID: 28234392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Dataset-Based Regression Model of Chemical Toxicity to Vibrio fischeri.
    Yu X; He M; Su L
    Arch Environ Contam Toxicol; 2023 Jul; 85(1):46-54. PubMed ID: 37407875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes.
    Yu X; Zeng Q
    Aquat Toxicol; 2022 Oct; 251():106265. PubMed ID: 36030712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random forest algorithm-based accurate prediction of chemical toxicity to Tetrahymena pyriformis.
    Fang Z; Yu X; Zeng Q
    Toxicology; 2022 Oct; 480():153325. PubMed ID: 36115645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing random forest based QSAR models for predicting the mixture toxicity of TiO
    Trinh TX; Seo M; Yoon TH; Kim J
    NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A QSTR model for toxicity prediction of pesticides towards Daphnia magna.
    Jia Q; Wang J; Yan F; Wang Q
    Chemosphere; 2022 Mar; 291(Pt 2):132980. PubMed ID: 34813852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna.
    He L; Xiao K; Zhou C; Li G; Yang H; Li Z; Cheng J
    Ecotoxicol Environ Saf; 2019 May; 173():285-292. PubMed ID: 30776561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of acute toxicity to
    Wu X; Guo J; Dang G; Sui X; Zhang Q
    SAR QSAR Environ Res; 2022 Aug; 33(8):583-600. PubMed ID: 35862554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna.
    Cappelli CI; Toropov AA; Toropova AP; Benfenati E
    Environ Toxicol Pharmacol; 2020 Nov; 80():103459. PubMed ID: 32721590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification Model of Pesticide Toxicity in Americamysis bahia Based on Quantum Chemical Descriptors.
    Dang L
    Arch Environ Contam Toxicol; 2024 Jul; 87(1):69-77. PubMed ID: 38937321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata.
    Ding F; Wang Z; Yang X; Shi L; Liu J; Chen G
    SAR QSAR Environ Res; 2019 Jan; 30(1):39-50. PubMed ID: 30477347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machine-based model for toxicity of organic compounds against fish.
    Yu X
    Regul Toxicol Pharmacol; 2021 Jul; 123():104942. PubMed ID: 33940084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation and extension of a similarity-based approach for prediction of acute aquatic toxicity towards Daphnia magna.
    Cassotti M; Consonni V; Mauri A; Ballabio D
    SAR QSAR Environ Res; 2014; 25(12):1013-36. PubMed ID: 25482581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity
    Furuhama A; Hayashi TI; Yamamoto H
    SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR modelling of organic dyes for their acute toxicity in Daphnia magna using 2D-descriptors.
    Jillella GK; Roy K
    SAR QSAR Environ Res; 2022 Feb; 33(2):111-139. PubMed ID: 35156472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the structural factors of organic compounds on the acute toxicity toward
    Tinkov OV; Grigorev VY; Razdolsky AN; Grigoryeva LD; Dearden JC
    SAR QSAR Environ Res; 2020 Aug; 31(8):615-641. PubMed ID: 32713201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR models for biocides: The example of the prediction of
    Marzo M; Lavado GJ; Como F; Toropova AP; Toropov AA; Baderna D; Cappelli C; Lombardo A; Toma C; Blázquez M; Benfenati E
    SAR QSAR Environ Res; 2020 Mar; 31(3):227-243. PubMed ID: 31941347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.