These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37778597)

  • 21. QSAR models for biocides: The example of the prediction of
    Marzo M; Lavado GJ; Como F; Toropova AP; Toropov AA; Baderna D; Cappelli C; Lombardo A; Toma C; Blázquez M; Benfenati E
    SAR QSAR Environ Res; 2020 Mar; 31(3):227-243. PubMed ID: 31941347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Influence of Structural Patterns on Acute Aquatic Toxicity of Organic Compounds.
    Tinkov O; Polishchuk P; Matveieva M; Grigorev V; Grigoreva L; Porozov Y
    Mol Inform; 2021 Sep; 40(9):e2000209. PubMed ID: 33029954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment.
    Liu H; Sun P; Liu H; Yang S; Wang L; Wang Z
    Chemosphere; 2015 Sep; 135():182-8. PubMed ID: 25950412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic aquatic toxicity assessment of diverse chemicals on Daphnia magna using QSAR and chemical read-across.
    Kumar A; Kumar V; Ojha PK; Roy K
    Regul Toxicol Pharmacol; 2024 Mar; 148():105572. PubMed ID: 38325631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting anionic surfactant toxicity to Daphnia magna in aquatic environment: a green approach for evaluation of EC
    Salmani MH; Garzegar S; Ehrampoush MH; Askarishahi M
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50731-50746. PubMed ID: 33973114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-activity relationship (QSAR) modeling of EC50 of aquatic toxicities for Daphnia magna.
    Katritzky AR; Slavov SH; Stoyanova-Slavova IS; Kahn I; Karelson M
    J Toxicol Environ Health A; 2009; 72(19):1181-90. PubMed ID: 20077186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata.
    Yu X
    Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aquatic toxicity (Pre)screening strategy for structurally diverse chemicals: global or local classification tree models?
    Gajewicz-Skretna A; Gromelski M; Wyrzykowska E; Furuhama A; Yamamoto H; Suzuki N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111738. PubMed ID: 33396066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of QSAAR and QAAR models for predicting fish early-life stage toxicity with a focus on industrial chemicals.
    Furuhama A; Hayashi TI; Yamamoto H
    SAR QSAR Environ Res; 2019 Nov; 30(11):825-846. PubMed ID: 31607178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues.
    Wang J; Yang Y; Huang Y; Zhang X; Huang Y; Qin WC; Wen Y; Zhao YH
    Ecotoxicol Environ Saf; 2020 Oct; 203():111046. PubMed ID: 32888614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna.
    Önlü S; Saçan MT
    J Hazard Mater; 2018 Jun; 351():20-28. PubMed ID: 29506002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of in silico models for prediction of Daphnia magna acute toxicity.
    Golbamaki A; Cassano A; Lombardo A; Moggio Y; Colafranceschi M; Benfenati E
    SAR QSAR Environ Res; 2014; 25(8):673-94. PubMed ID: 24911142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. External validation of acute-to-chronic models for estimation of reproductive toxicity to Daphnia magna.
    Furuhama A; Hayashi TI; Yamamoto H; Tatarazako N
    SAR QSAR Environ Res; 2017 Sep; 28(9):765-781. PubMed ID: 29022371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.
    Reenu ; Vikas
    J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of seven in silico tools for evaluating of daphnia and fish acute toxicity: case study on Chinese Priority Controlled Chemicals and new chemicals.
    Zhou L; Fan D; Yin W; Gu W; Wang Z; Liu J; Xu Y; Shi L; Liu M; Ji G
    BMC Bioinformatics; 2021 Mar; 22(1):151. PubMed ID: 33761866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs).
    Ha H; Park K; Kang G; Lee S
    Ecotoxicology; 2019 Apr; 28(3):333-342. PubMed ID: 30790110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemometric modeling of Daphnia magna toxicity of agrochemicals.
    Khan PM; Roy K; Benfenati E
    Chemosphere; 2019 Jun; 224():470-479. PubMed ID: 30831498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.
    Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P
    J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.