These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37778597)
41. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling. Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385 [TBL] [Abstract][Full Text] [Related]
42. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR. Li F; Sun G; Fan T; Zhang N; Zhao L; Zhong R; Peng Y Aquat Toxicol; 2023 Feb; 255():106393. PubMed ID: 36621240 [TBL] [Abstract][Full Text] [Related]
43. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
44. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Hossain KA; Roy K Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287 [TBL] [Abstract][Full Text] [Related]
45. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors. Kar S; Roy K J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248 [TBL] [Abstract][Full Text] [Related]
46. Aquatic toxicity assessment of esters towards the Daphnia magna through PCA-ANFIS. Asadollahi-Baboli M Bull Environ Contam Toxicol; 2013 Oct; 91(4):450-4. PubMed ID: 23884170 [TBL] [Abstract][Full Text] [Related]
47. ECOSAR model performance with a large test set of industrial chemicals. Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586 [TBL] [Abstract][Full Text] [Related]
48. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity. Sangion A; Gramatica P Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576 [TBL] [Abstract][Full Text] [Related]
49. Development of Quantitative Structure-Activity Relationship Models for Predicting Chronic Toxicity of Substituted Benzenes to Daphnia Magna. Fan D; Liu J; Wang L; Yang X; Zhang S; Zhang Y; Shi L Bull Environ Contam Toxicol; 2016 May; 96(5):664-70. PubMed ID: 27016939 [TBL] [Abstract][Full Text] [Related]
50. A linear model to predict chronic effects of chemicals on Daphnia magna. Mombelli E; Pery AR Bull Environ Contam Toxicol; 2011 Nov; 87(5):494-8. PubMed ID: 21909626 [TBL] [Abstract][Full Text] [Related]
51. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. Gajewicz-Skretna A; Furuhama A; Yamamoto H; Suzuki N Chemosphere; 2021 Oct; 280():130681. PubMed ID: 34162070 [TBL] [Abstract][Full Text] [Related]
52. Machine learning-based prediction of toxicity of organic compounds towards fathead minnow. Chen X; Dang L; Yang H; Huang X; Yu X RSC Adv; 2020 Sep; 10(59):36174-36180. PubMed ID: 35517078 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of CADASTER QSAR models for the aquatic toxicity of (benzo)triazoles and prioritisation by consensus prediction. Cassani S; Kovarich S; Papa E; Roy PP; Rahmberg M; Nilsson S; Sahlin U; Jeliazkova N; Kochev N; Pukalov O; Tetko I; Brandmaier S; Durjava MK; Kolar B; Peijnenburg W; Gramatica P Altern Lab Anim; 2013 Mar; 41(1):49-64. PubMed ID: 23614544 [TBL] [Abstract][Full Text] [Related]
54. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach. Khan K; Roy K SAR QSAR Environ Res; 2017 Jul; 28(7):567-594. PubMed ID: 28780892 [TBL] [Abstract][Full Text] [Related]
55. Synthesis, biological activity, and four-dimensional quantitative structure-activity analysis of 2-arylidene indan-1,3-dione derivatives tested against Andreazza Costa MC; Miguel Castro Ferreira M; Teixeira RR; Martins de Souza AP; Ramos de Aguiar A; R da Silva D; Jonsson CM; Queiroz SCN SAR QSAR Environ Res; 2021 Feb; 32(2):133-150. PubMed ID: 33601998 [TBL] [Abstract][Full Text] [Related]
56. Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method. Cassotti M; Ballabio D; Consonni V; Mauri A; Tetko IV; Todeschini R Altern Lab Anim; 2014 Mar; 42(1):31-41. PubMed ID: 24773486 [TBL] [Abstract][Full Text] [Related]
57. Modeling and insights into the structural basis of chemical acute aquatic toxicity. Zhang R; Guo H; Hua Y; Cui X; Shi Y; Li X Ecotoxicol Environ Saf; 2022 Sep; 242():113940. PubMed ID: 35999760 [TBL] [Abstract][Full Text] [Related]
58. Quasi-SMILES for predicting toxicity of Nano-mixtures to Daphnia Magna. Toropova AP; Toropov AA; Fjodorova N NanoImpact; 2022 Oct; 28():100427. PubMed ID: 36113716 [TBL] [Abstract][Full Text] [Related]
59. Fish early life stage toxicity prediction from acute daphnid toxicity and quantum chemistry. Schmidt S; Schindler M; Faber D; Hager J SAR QSAR Environ Res; 2021 Feb; 32(2):151-174. PubMed ID: 33525942 [TBL] [Abstract][Full Text] [Related]
60. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish. Tebby C; Mombelli E; Pandard P; Péry AR Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]