These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37778604)

  • 1. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges.
    Hu F; Wang P; Li Y; Ling J; Ruan Y; Yu J; Zhang L
    Environ Res; 2023 Dec; 239(Pt 1):117211. PubMed ID: 37778604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of microorganisms in petroleum degradation: Current development and prospects.
    Chunyan X; Qaria MA; Qi X; Daochen Z
    Sci Total Environ; 2023 Mar; 865():161112. PubMed ID: 36586680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.
    Sakthipriya N; Doble M; Sangwai JS
    Environ Sci Process Impacts; 2016 Mar; 18(3):386-97. PubMed ID: 26875795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics for the characterization of the mechanisms of microbial strains in degrading petroleum pollutants.
    Sui X; Wang X; Yu L; Ji H
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21608-21618. PubMed ID: 36271069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contemporary enzyme based technologies for bioremediation: A review.
    Sharma B; Dangi AK; Shukla P
    J Environ Manage; 2018 Mar; 210():10-22. PubMed ID: 29329004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal.
    Bhadra S; Chettri D; Kumar Verma A
    Appl Biochem Biotechnol; 2023 Sep; 195(9):5541-5567. PubMed ID: 35579742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater.
    Jain M; Khan SA; Sharma K; Jadhao PR; Pant KK; Ziora ZM; Blaskovich MAT
    Bioresour Technol; 2022 Jan; 344(Pt B):126305. PubMed ID: 34752892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants.
    Elumalai P; Parthipan P; Huang M; Muthukumar B; Cheng L; Govarthanan M; Rajasekar A
    Environ Pollut; 2021 Nov; 289():117956. PubMed ID: 34426181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation.
    Medić AB; Karadžić IM
    World J Microbiol Biotechnol; 2022 Jul; 38(10):165. PubMed ID: 35861883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-bioremediation: an eco-friendly and effective step towards petroleum hydrocarbon removal from environment.
    Chauhan P; Imam A; Kanaujia PK; Suman SK
    Environ Res; 2023 Aug; 231(Pt 2):116224. PubMed ID: 37224942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Laccases and Hemeproteins Systems in Bioremediation of Organic Pollutants.
    Lopes JM; Marques-da-Silva D; Videira PQ; Lagoa RL
    Curr Protein Pept Sci; 2022; 23(6):402-423. PubMed ID: 35794739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants.
    Zhuo R; Fan F
    Sci Total Environ; 2021 Jul; 778():146132. PubMed ID: 33714829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review.
    Petsas AS; Vagi MC
    Curr Pharm Biotechnol; 2019; 20(10):787-824. PubMed ID: 31131748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations.
    Kumari S; Das S
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):79676-79705. PubMed ID: 37330441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination.
    Varjani S; Upasani VN; Pandey A
    Sci Total Environ; 2020 Oct; 737():139766. PubMed ID: 32526573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes.
    Saravanan A; Kumar PS; Vo DN; Jeevanantham S; Karishma S; Yaashikaa PR
    J Hazard Mater; 2021 Oct; 419():126451. PubMed ID: 34174628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations.
    Behera S; Das S
    Microbiol Res; 2023 Aug; 273():127399. PubMed ID: 37150049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes.
    Bilal M; Rasheed T; Iqbal HMN; Yan Y
    Sci Total Environ; 2018 Dec; 644():1-13. PubMed ID: 29980079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects.
    Narayanan M; Ali SS; El-Sheekh M
    J Environ Manage; 2023 May; 334():117532. PubMed ID: 36801803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biodegradation of organic pollutants by thermophiles and their applications: a review].
    Cui JL; Chen C; Qin ZH; Yu CN; Shen H; Shen CF; Chen YX
    Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3218-26. PubMed ID: 23431811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.