These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37778619)

  • 21. The evolution of dispersal under demographic stochasticity.
    Cadet C; Ferrière R; Metz JA; van Baalen M
    Am Nat; 2003 Oct; 162(4):427-41. PubMed ID: 14582006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A persistence criterion for metapopulations.
    Casagrandi R; Gatto M
    Theor Popul Biol; 2002 Mar; 61(2):115-25. PubMed ID: 11969384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical methods for predicting the behaviour of population models with general spatial interactions.
    Filipe JA; Maule MM
    Math Biosci; 2003 May; 183(1):15-35. PubMed ID: 12604133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems.
    Hamis S; Somervuo P; Ågren JA; Tadele DS; Kesseli J; Scott JG; Nykter M; Gerlee P; Finkelshtein D; Ovaskainen O
    J Math Biol; 2023 Apr; 86(5):68. PubMed ID: 37017776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pair approximation for lattice models with multiple interaction scales.
    Ellner SP
    J Theor Biol; 2001 Jun; 210(4):435-47. PubMed ID: 11403564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approximating the Critical Domain Size of Integrodifference Equations.
    Reimer JR; Bonsall MB; Maini PK
    Bull Math Biol; 2016 Jan; 78(1):72-109. PubMed ID: 26721746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The critical domain size of stochastic population models.
    Reimer JR; Bonsall MB; Maini PK
    J Math Biol; 2017 Feb; 74(3):755-782. PubMed ID: 27395043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the effects of spatial heterogeneity and temporal variation in extinction probability on mosquito populations.
    Alcalay Y; Tsurim I; Ovadia O
    Ecol Appl; 2017 Dec; 27(8):2342-2358. PubMed ID: 28851019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Species survival emerge from rare events of individual migration.
    Zelnik YR; Solomon S; Yaari G
    Sci Rep; 2015 Jan; 5():7877. PubMed ID: 25597477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spreading speeds for plant populations in landscapes with low environmental variation.
    Gilbert MA; Gaffney EA; Bullock JM; White SM
    J Theor Biol; 2014 Dec; 363():436-52. PubMed ID: 25152218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Invasion and adaptive evolution for individual-based spatially structured populations.
    Champagnat N; Méléard S
    J Math Biol; 2007 Aug; 55(2):147-88. PubMed ID: 17554541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic population growth in spatially heterogeneous environments: the density-dependent case.
    Hening A; Nguyen DH; Yin G
    J Math Biol; 2018 Feb; 76(3):697-754. PubMed ID: 28674928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Survival and extinction results for a patch model with sexual reproduction.
    Foxall E; Lanchier N
    J Math Biol; 2017 May; 74(6):1299-1349. PubMed ID: 27647126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion rate determines balance between extinction and proliferation in birth-death processes.
    Behar H; Agranovich A; Louzoun Y
    Math Biosci Eng; 2013 Jun; 10(3):523-50. PubMed ID: 23906134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating the underlying structure of stochasticity into community ecology.
    Shoemaker LG; Sullivan LL; Donohue I; Cabral JS; Williams RJ; Mayfield MM; Chase JM; Chu C; Harpole WS; Huth A; HilleRisLambers J; James ARM; Kraft NJB; May F; Muthukrishnan R; Satterlee S; Taubert F; Wang X; Wiegand T; Yang Q; Abbott KC
    Ecology; 2020 Feb; 101(2):e02922. PubMed ID: 31652337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pair and triplet approximation of a spatial lattice population model with multiscale dispersal using Markov chains for estimating spatial autocorrelation.
    Hiebeler DE; Millett NE
    J Theor Biol; 2011 Jun; 279(1):74-82. PubMed ID: 21457720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis and control of pre-extinction dynamics in stochastic populations.
    Nieddu G; Billings L; Forgoston E
    Bull Math Biol; 2014 Dec; 76(12):3122-37. PubMed ID: 25424592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Population viability analysis of plant and animal populations with stochastic integral projection models.
    Jaffré M; Le Galliard JF
    Oecologia; 2016 Dec; 182(4):1031-1043. PubMed ID: 27586695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological invasion, roughened fronts, and a competitor's extreme advance: integrating stochastic spatial-growth models.
    O'Malley L; Korniss G; Caraco T
    Bull Math Biol; 2009 Jul; 71(5):1160-88. PubMed ID: 19219509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Connecting deterministic and stochastic metapopulation models.
    Barbour AD; McVinish R; Pollett PK
    J Math Biol; 2015 Dec; 71(6-7):1481-504. PubMed ID: 25735440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.