These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37778923)

  • 1. Fungal infection of insects: molecular insights and prospects.
    Hong S; Shang J; Sun Y; Tang G; Wang C
    Trends Microbiol; 2024 Mar; 32(3):302-316. PubMed ID: 37778923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fights on the surface prior to fungal invasion of insects.
    Shang J; Hong S; Wang C
    PLoS Pathog; 2024 Feb; 20(2):e1011994. PubMed ID: 38386619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements.
    Wang C; Wang S
    Annu Rev Entomol; 2017 Jan; 62():73-90. PubMed ID: 27860524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Helvolic Acid in Metarhizium Contributes to Fungal Infection of Insects by Bacteriostatic Inhibition of the Host Cuticular Microbiomes.
    Sun Y; Hong S; Chen H; Yin Y; Wang C
    Microbiol Spectr; 2022 Oct; 10(5):e0262022. PubMed ID: 36047778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies.
    Pedrini N
    Fungal Biol; 2018 Jun; 122(6):538-545. PubMed ID: 29801798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Genomics of Entomopathogenic Fungi.
    Wang JB; St Leger RJ; Wang C
    Adv Genet; 2016; 94():67-105. PubMed ID: 27131323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungus-insect interactions beyond bilateral regimes: the importance and strategy to outcompete host ectomicrobiomes by fungal parasites.
    Hong S; Sun Y; Chen H; Zhao P; Wang C
    Curr Opin Microbiol; 2023 Aug; 74():102336. PubMed ID: 37320866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The secretory protein COA1 enables Metarhizium robertsii to evade insect immune recognition during cuticle penetration.
    Zhang Q; Wei X; Fang W; Huang X; Zhang X
    Commun Biol; 2024 Sep; 7(1):1220. PubMed ID: 39349686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system.
    Wang H; Lu Z; Keyhani NO; Deng J; Zhao X; Huang S; Luo Z; Jin K; Zhang Y
    PLoS Pathog; 2023 Aug; 19(8):e1011578. PubMed ID: 37556475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtilisin-like Pr1 proteases marking the evolution of pathogenicity in a wide-spectrum insect-pathogenic fungus.
    Gao BJ; Mou YN; Tong SM; Ying SH; Feng MG
    Virulence; 2020 Dec; 11(1):365-380. PubMed ID: 32253991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transcription factor-mediated regulatory network controls fungal pathogen colonization of insect body cavities.
    Deng J; Huang S; Kan Y; Song Y; Zhao X; Li N; Yao X; Luo Z; Zhang Y
    mBio; 2024 Jun; 15(6):e0350423. PubMed ID: 38747587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum.
    Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C
    PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A M35 family metalloprotease is required for fungal virulence against insects by inactivating host prophenoloxidases and beyond.
    Huang A; Lu M; Ling E; Li P; Wang C
    Virulence; 2020 Dec; 11(1):222-237. PubMed ID: 32079481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative roles of three adhesin genes (adh1-3) in insect-pathogenic lifecycle of Beauveria bassiana.
    Zhou Q; Yu L; Ying SH; Feng MG
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5491-5502. PubMed ID: 34169325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities.
    Shahbaz M; Palaniveloo K; Tan YS; Palasuberniam P; Ilyas N; Wiart C; Seelan JSS
    World J Microbiol Biotechnol; 2024 May; 40(7):217. PubMed ID: 38806748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages.
    Ma M; Luo J; Li C; Eleftherianos I; Zhang W; Xu L
    Front Immunol; 2023; 14():1329843. PubMed ID: 38259477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana.
    Zhang Y; Zhang J; Jiang X; Wang G; Luo Z; Fan Y; Wu Z; Pei Y
    Appl Environ Microbiol; 2010 Apr; 76(7):2262-70. PubMed ID: 20139313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects.
    Liao X; Lovett B; Fang W; St Leger RJ
    Microbiology (Reading); 2017 Jul; 163(7):980-991. PubMed ID: 28708056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.
    Butt TM; Coates CJ; Dubovskiy IM; Ratcliffe NA
    Adv Genet; 2016; 94():307-64. PubMed ID: 27131329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Entomopathogenic Fungi
    Gupta R; Keppanan R; Leibman-Markus M; Rav-David D; Elad Y; Ment D; Bar M
    Phytopathology; 2022 Apr; 112(4):784-793. PubMed ID: 34636647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.