These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 37779140)

  • 1. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics.
    Lee Y; Jeong M; Park J; Jung H; Lee H
    Exp Mol Med; 2023 Oct; 55(10):2085-2096. PubMed ID: 37779140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in mRNA vaccines.
    Li M; Wang Z; Xie C; Xia X
    Int Rev Cell Mol Biol; 2022; 372():295-316. PubMed ID: 36064266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines.
    Matsumura T; Takano T; Takahashi Y
    Int Immunol; 2023 May; 35(5):213-220. PubMed ID: 36566501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency.
    Anderluzzi G; Lou G; Woods S; Schmidt ST; Gallorini S; Brazzoli M; Johnson R; Roberts CW; O'Hagan DT; Baudner BC; Perrie Y
    J Control Release; 2022 Feb; 342():388-399. PubMed ID: 34896446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency.
    Forster Iii J; Nandi D; Kulkarni A
    Biomater Sci; 2022 Sep; 10(19):5566-5582. PubMed ID: 35971974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines.
    Han X; Alameh MG; Butowska K; Knox JJ; Lundgreen K; Ghattas M; Gong N; Xue L; Xu Y; Lavertu M; Bates P; Xu J; Nie G; Zhong Y; Weissman D; Mitchell MJ
    Nat Nanotechnol; 2023 Sep; 18(9):1105-1114. PubMed ID: 37365276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Lipid Nanoparticles Stable and Efficient for mRNA Transfection to Antigen-Presenting Cells.
    Choi KC; Lee DH; Lee JW; Lee JS; Lee YK; Choi MJ; Jeong HY; Kim MW; Lee CG; Park YS
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA Synthesis and Encapsulation in Ionizable Lipid Nanoparticles.
    McKenzie RE; Minnell JJ; Ganley M; Painter GF; Draper SL
    Curr Protoc; 2023 Sep; 3(9):e898. PubMed ID: 37747354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies.
    Li H; Peng K; Yang K; Ma W; Qi S; Yu X; He J; Lin X; Yu G
    Theranostics; 2022; 12(14):6422-6436. PubMed ID: 36168634
    [No Abstract]   [Full Text] [Related]  

  • 10. Delivery Strategies for mRNA Vaccines.
    Ramachandran S; Satapathy SR; Dutta T
    Pharmaceut Med; 2022 Feb; 36(1):11-20. PubMed ID: 35094366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines.
    Malburet C; Leclercq L; Cotte JF; Thiebaud J; Bazin E; Garinot M; Cottet H
    Anal Chem; 2022 Mar; 94(11):4677-4685. PubMed ID: 35254048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose-Dependent Production of Anti-PEG IgM after Intramuscular PEGylated-Hydrogenated Soy Phosphatidylcholine Liposomes, but Not Lipid Nanoparticle Formulations of DNA, Correlates with the Plasma Clearance of PEGylated Liposomal Doxorubicin in Rats.
    Subasic CN; Butcher NJ; Minchin RF; Kaminskas LM
    Mol Pharm; 2023 Jul; 20(7):3494-3504. PubMed ID: 37256791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mRNA-encoded, constitutively active STING
    Tse SW; McKinney K; Walker W; Nguyen M; Iacovelli J; Small C; Hopson K; Zaks T; Huang E
    Mol Ther; 2021 Jul; 29(7):2227-2238. PubMed ID: 33677092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles for designing an optimal mRNA lipid nanoparticle vaccine.
    Kon E; Elia U; Peer D
    Curr Opin Biotechnol; 2022 Feb; 73():329-336. PubMed ID: 34715546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid Microparticles Show Similar Efficacy With Lipid Nanoparticles in Delivering mRNA and Preventing Cancer.
    Ji A; Xu M; Pan Y; Diao L; Ma L; Qian L; Cheng J; Liu M
    Pharm Res; 2023 Jan; 40(1):265-279. PubMed ID: 36451070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterials for nanoparticle vaccine delivery systems.
    Sahdev P; Ochyl LJ; Moon JJ
    Pharm Res; 2014 Oct; 31(10):2563-82. PubMed ID: 24848341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and Delivery Technologies for mRNA Vaccines.
    Zeng C; Zhang C; Walker PG; Dong Y
    Curr Top Microbiol Immunol; 2022; 440():71-110. PubMed ID: 32483657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines.
    Li Z; Zhang XQ; Ho W; Li F; Gao M; Bai X; Xu X
    ACS Nano; 2022 Nov; 16(11):18936-18950. PubMed ID: 36269150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the
    Aibani N; Patel P; Buchanan R; Strom S; Wasan KM; Hancock REW; Gerdts V; Wasan EK
    Mol Pharm; 2022 Jun; 19(6):1814-1824. PubMed ID: 35302764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.