These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 37779188)
1. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. Cheng X; Zhang Y; Zhu M; Sun R; Liu L; Li X BMC Med Imaging; 2023 Oct; 23(1):145. PubMed ID: 37779188 [TBL] [Abstract][Full Text] [Related]
2. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
3. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. Fan L; Yang Z; Chang M; Chen Z; Wen Q J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720 [TBL] [Abstract][Full Text] [Related]
4. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer. Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a radiomics-based model to predict local progression-free survival after chemo-radiotherapy in patients with esophageal squamous cell cancer. Luo HS; Chen YY; Huang WZ; Wu SX; Huang SF; Xu HY; Xue RL; Du ZS; Li XY; Lin LX; Huang HC Radiat Oncol; 2021 Oct; 16(1):201. PubMed ID: 34641928 [TBL] [Abstract][Full Text] [Related]
6. Computed tomography-based radiomics nomogram for prediction of lympho-vascular and perineural invasion in esophageal squamous cell cancer patients: a retrospective cohort study. Tang B; Wu F; Peng L; Leng X; Han Y; Wang Q; Wu J; Orlandini LC Cancer Imaging; 2024 Oct; 24(1):131. PubMed ID: 39367492 [TBL] [Abstract][Full Text] [Related]
7. Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data. Li ZM; Liu W; Chen XL; Wu WZ; Xu XE; Chu MY; Yu SX; Li EM; Huang HC; Xu LY Clin Res Hepatol Gastroenterol; 2024 Apr; 48(4):102318. PubMed ID: 38471582 [TBL] [Abstract][Full Text] [Related]
8. Radiomics and dosiomics for predicting complete response to definitive chemoradiotherapy patients with oesophageal squamous cell cancer using the hybrid institution model. Kawahara D; Murakami Y; Awane S; Emoto Y; Iwashita K; Kubota H; Sasaki R; Nagata Y Eur Radiol; 2024 Feb; 34(2):1200-1209. PubMed ID: 37589902 [TBL] [Abstract][Full Text] [Related]
9. A predictive model for treatment response in patients with locally advanced esophageal squamous cell carcinoma after concurrent chemoradiotherapy: based on SUVmean and NLR. Wang C; Zhao K; Hu S; Huang Y; Ma L; Song Y; Li M BMC Cancer; 2020 Jun; 20(1):544. PubMed ID: 32522277 [TBL] [Abstract][Full Text] [Related]
10. Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma. Peng H; Yang Q; Xue T; Chen Q; Li M; Duan S; Cai B; Feng F Br J Radiol; 2022 Feb; 95(1130):20210918. PubMed ID: 34908477 [TBL] [Abstract][Full Text] [Related]
11. Response Prediction Using Hu X; Zhou T; Ren J; Duan J; Wu H; Liu X; Mu Z; Liu N; Wei Y; Yuan S J Nucl Med; 2023 Apr; 64(4):625-631. PubMed ID: 36229183 [TBL] [Abstract][Full Text] [Related]
13. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures. Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480 [TBL] [Abstract][Full Text] [Related]
14. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy. Yan S; Li FP; Jian L; Zhu HT; Zhao B; Li XT; Shi YJ; Sun YS BMC Cancer; 2023 May; 23(1):477. PubMed ID: 37231388 [TBL] [Abstract][Full Text] [Related]
15. Prediction of lymphovascular invasion in esophageal squamous cell carcinoma by computed tomography-based radiomics analysis: 2D or 3D ? Li Y; Gu X; Yang L; Wang X; Wang Q; Xu X; Zhang A; Yue M; Wang M; Cong M; Ren J; Ren W; Shi G Cancer Imaging; 2024 Oct; 24(1):141. PubMed ID: 39420415 [TBL] [Abstract][Full Text] [Related]
16. Preoperative CT radiomics of esophageal squamous cell carcinoma and lymph node to predict nodal disease with a high diagnostic capability. Wu YP; Wu L; Ou J; Cao JM; Fu MY; Chen TW; Ouchi E; Hu J Eur J Radiol; 2024 Jan; 170():111197. PubMed ID: 37992611 [TBL] [Abstract][Full Text] [Related]
17. Lymphopenia in Esophageal Squamous Cell Carcinoma: Relationship to Malnutrition, Various Disease Parameters, and Response to Concurrent Chemoradiotherapy. Zhou XL; Zhu WG; Zhu ZJ; Wang WW; Deng X; Tao WJ; Ji FZ; Tong YS Oncologist; 2019 Aug; 24(8):e677-e686. PubMed ID: 31040254 [TBL] [Abstract][Full Text] [Related]
18. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
19. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
20. A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma. Kasai A; Miyoshi J; Sato Y; Okamoto K; Miyamoto H; Kawanaka T; Tonoiso C; Harada M; Goto M; Yoshida T; Haga A; Takayama T Sci Rep; 2024 Jan; 14(1):2039. PubMed ID: 38263395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]