These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37779245)

  • 41. Characterization and Optimization of Multiomic Single-Cell Epigenomic Profiling.
    Sandoval L; Mohammed Ismail W; Mazzone A; Dumbrava M; Fernandez J; Munankarmy A; Lasho T; Binder M; Simon V; Kim KH; Chia N; Lee JH; Weroha SJ; Patnaik M; Gaspar-Maia A
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372428
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding.
    Quinodoz SA; Bhat P; Chovanec P; Jachowicz JW; Ollikainen N; Detmar E; Soehalim E; Guttman M
    Nat Protoc; 2022 Jan; 17(1):36-75. PubMed ID: 35013617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. WASP: a versatile, web-accessible single cell RNA-Seq processing platform.
    Hoek A; Maibach K; Özmen E; Vazquez-Armendariz AI; Mengel JP; Hain T; Herold S; Goesmann A
    BMC Genomics; 2021 Mar; 22(1):195. PubMed ID: 33736596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. scTyper: a comprehensive pipeline for the cell typing analysis of single-cell RNA-seq data.
    Choi JH; In Kim H; Woo HG
    BMC Bioinformatics; 2020 Aug; 21(1):342. PubMed ID: 32753029
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing.
    Cai C; Wan P; Wang H; Cai X; Wang J; Chai Z; Wang J; Wang H; Zhang M; Yang N; Wu Z; Zhu J; Yang X; Li Y; Yue B; Dang R; Zhong J
    Cell Prolif; 2023 Sep; 56(9):e13430. PubMed ID: 36855961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. iPoLNG-An unsupervised model for the integrative analysis of single-cell multiomics data.
    Zhang W; Lin Z
    Front Genet; 2023; 14():998504. PubMed ID: 36865385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis.
    Poos AM; Prokoph N; Przybilla MJ; Mallm JP; Steiger S; Seufert I; John L; Tirier SM; Bauer K; Baumann A; Rohleder J; Munawar U; Rasche L; Kortüm KM; Giesen N; Reichert P; Huhn S; Müller-Tidow C; Goldschmidt H; Stegle O; Raab MS; Rippe K; Weinhold N
    Blood; 2023 Nov; 142(19):1633-1646. PubMed ID: 37390336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution.
    Guo W; Hu Y; Qian J; Zhu L; Cheng J; Liao J; Fan X
    J Genet Genomics; 2023 Sep; 50(9):641-651. PubMed ID: 37544594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational Integration of HSV-1 Multi-omics Data.
    Friedel CC
    Methods Mol Biol; 2023; 2610():31-48. PubMed ID: 36534279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. simATAC: a single-cell ATAC-seq simulation framework.
    Navidi Z; Zhang L; Wang B
    Genome Biol; 2021 Mar; 22(1):74. PubMed ID: 33663563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new thinking: extended application of genomic selection to screen multiomics data for development of novel hypoxia-immune biomarkers and target therapy of clear cell renal cell carcinoma.
    Gui CP; Wei JH; Chen YH; Fu LM; Tang YM; Cao JZ; Chen W; Luo JH
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34237133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
    Gao M; Ling M; Tang X; Wang S; Xiao X; Qiao Y; Yang W; Yu R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of Nuclei from Flash-frozen Liver Tissue for Single-cell Multiomics.
    Strzelecki M; Yin K; Talavera-López C; Martinez-Jimenez CP
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36571404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. scME: a dual-modality factor model for single-cell multiomics embedding.
    Zhou B; Yang F; Zeng F
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37220900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics.
    Ghannoum S; Leoncio Netto W; Fantini D; Ragan-Kelley B; Parizadeh A; Jonasson E; Ståhlberg A; Farhan H; Köhn-Luque A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial transformation of multi-omics data unlocks novel insights into cancer biology.
    Sokač M; Kjær A; Dyrskjøt L; Haibe-Kains B; Jwl Aerts H; Birkbak NJ
    Elife; 2023 Sep; 12():. PubMed ID: 37669321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.