These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37779888)
1. Thermal Characterization of Metal-Diamond Composite Heat Spreaders Using Low-Frequency-Domain Thermoreflectance. Abdallah Z; Pomeroy JW; Neubauer E; Kuball M ACS Appl Electron Mater; 2023 Sep; 5(9):5017-5024. PubMed ID: 37779888 [TBL] [Abstract][Full Text] [Related]
2. In situ Thermoreflectance Characterization of Thermal Resistance in Multilayer Electronics Packaging. Poopakdee N; Abdallah Z; Pomeroy JW; Kuball M ACS Appl Electron Mater; 2022 Apr; 4(4):1558-1566. PubMed ID: 35573030 [TBL] [Abstract][Full Text] [Related]
3. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance. Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632 [TBL] [Abstract][Full Text] [Related]
4. Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications. Chang G; Sun F; Wang L; Che Z; Wang X; Wang J; Kim MJ; Zhang H ACS Appl Mater Interfaces; 2019 Jul; 11(29):26507-26517. PubMed ID: 31283161 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous Measurement of Thermal Conductivity and Volumetric Heat Capacity of Thermal Interface Materials Using Thermoreflectance. Abdallah Z; Pomeroy JW; Blasakis N; Baltopoulos A; Kuball M ACS Appl Electron Mater; 2024 Jul; 6(7):5183-5189. PubMed ID: 39070086 [TBL] [Abstract][Full Text] [Related]
6. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale. Sun J; Lv G; Cahill DG Rev Sci Instrum; 2023 Jan; 94(1):014903. PubMed ID: 36725548 [TBL] [Abstract][Full Text] [Related]
7. Inversion for Thermal Properties with Frequency Domain Thermoreflectance. Treweek B; Akcelik V; Hodges W; Jarzembski A; Bahr M; Jordan M; McDonald A; Yates L; Walsh T; Pickrell G ACS Appl Mater Interfaces; 2024 Jan; 16(3):4117-4125. PubMed ID: 38194473 [TBL] [Abstract][Full Text] [Related]
8. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169 [TBL] [Abstract][Full Text] [Related]
9. Frequency domain thermoreflectance technique for measuring the thermal conductivity of individual micro-particles. Goni M; Patelka M; Ikeda S; Sato T; Schmidt AJ Rev Sci Instrum; 2018 Jul; 89(7):074901. PubMed ID: 30068113 [TBL] [Abstract][Full Text] [Related]
10. A frequency-domain thermoreflectance method for the characterization of thermal properties. Schmidt AJ; Cheaito R; Chiesa M Rev Sci Instrum; 2009 Sep; 80(9):094901. PubMed ID: 19791955 [TBL] [Abstract][Full Text] [Related]
11. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. Cheng Z; Mu F; Yates L; Suga T; Graham S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013 [TBL] [Abstract][Full Text] [Related]
13. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180 [TBL] [Abstract][Full Text] [Related]
14. Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties. Baig MMA; Hassan SF; Saheb N; Patel F Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771784 [TBL] [Abstract][Full Text] [Related]
15. Ga Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Characterization and Thermal Conductivity of Diamond/Cu Composites Prepared by Liquid-Solid Separation Technique. Li Y; Zhou H; Wu C; Yin Z; Liu C; Liu J; Shi Z Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903755 [TBL] [Abstract][Full Text] [Related]
18. Constructing a three-dimensional nano-crystalline diamond network within polymer composites for enhanced thermal conductivity. Xiong S; Qin Y; Li L; Yang G; Li M; Wei X; Song G; Man W; Wang B; Cai T; Yi J; Fu L; Lin CT; Jiang N; Nishimura K; Yu J Nanoscale; 2021 Nov; 13(44):18657-18664. PubMed ID: 34734962 [TBL] [Abstract][Full Text] [Related]
19. Seed Dibbling Method for the Growth of High-Quality Diamond on GaN. Soleimanzadeh R; Naamoun M; Floriduz A; Khadar RA; van Erp R; Matioli E ACS Appl Mater Interfaces; 2021 Sep; 13(36):43516-43523. PubMed ID: 34464085 [TBL] [Abstract][Full Text] [Related]
20. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. Wang L; Cheaito R; Braun JL; Giri A; Hopkins PE Rev Sci Instrum; 2016 Sep; 87(9):094902. PubMed ID: 27782592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]