BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37779889)

  • 1. Spatially-Resolved Thermometry of Filamentary Nanoscale Hot Spots in TiO
    Swoboda T; Gao X; Rosário CMM; Hui F; Zhu K; Yuan Y; Deshmukh S; Köroǧlu Ç; Pop E; Lanza M; Hilgenkamp H; Rojo MM
    ACS Appl Electron Mater; 2023 Sep; 5(9):5025-5031. PubMed ID: 37779889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of nanoscale filamentary hot spots in resistive memory devices.
    Deshmukh S; Rojo MM; Yalon E; Vaziri S; Koroglu C; Islam R; Iglesias RA; Saraswat K; Pop E
    Sci Adv; 2022 Apr; 8(13):eabk1514. PubMed ID: 35353574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Area-Selective Atomic Layer Deposition for Resistive Random-Access Memory Devices.
    Oh IK; Khan AI; Qin S; Lee Y; Wong HP; Pop E; Bent SF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43087-43093. PubMed ID: 37656599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially Resolved Thermometry of Resistive Memory Devices.
    Yalon E; Deshmukh S; Muñoz Rojo M; Lian F; Neumann CM; Xiong F; Pop E
    Sci Rep; 2017 Nov; 7(1):15360. PubMed ID: 29127371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Thermal Models for Resistive Random Access Memory Circuit Simulation.
    Roldán JB; González-Cordero G; Picos R; Miranda E; Palumbo F; Jiménez-Molinos F; Moreno E; Maldonado D; Baldomá SB; Moner Al Chawa M; de Benito C; Stavrinides SG; Suñé J; Chua LO
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34065014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Characterization of Conductive Filaments in Unipolar Resistive Memories.
    Aguilera-Pedregosa C; Maldonado D; González MB; Moreno E; Jiménez-Molinos F; Campabadal F; Roldán JB
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance Quantization in Resistive Random Access Memory.
    Li Y; Long S; Liu Y; Hu C; Teng J; Liu Q; Lv H; Suñé J; Liu M
    Nanoscale Res Lett; 2015 Dec; 10(1):420. PubMed ID: 26501832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient Thermometry and High-Resolution Transmission Electron Microscopy Analysis of Filamentary Resistive Switches.
    Kwon J; Sharma AA; Chen CY; Fantini A; Jurczak M; Herzing AA; Bain JA; Picard YN; Skowronski M
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20176-84. PubMed ID: 27351065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching.
    Li Y; Fuller EJ; Sugar JD; Yoo S; Ashby DS; Bennett CH; Horton RD; Bartsch MS; Marinella MJ; Lu WD; Talin AA
    Adv Mater; 2020 Nov; 32(45):e2003984. PubMed ID: 32964602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials.
    Li Y; Long S; Liu Q; Lv H; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28417548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability Improvement of TiO
    Banerjee W; Xu X; Lv H; Liu Q; Long S; Liu M
    ACS Omega; 2017 Oct; 2(10):6888-6895. PubMed ID: 31457275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory.
    Celano U; Goux L; Degraeve R; Fantini A; Richard O; Bender H; Jurczak M; Vandervorst W
    Nano Lett; 2015 Dec; 15(12):7970-5. PubMed ID: 26523952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of GO and r-GO in resistance switching behavior of bilayer TiO
    Srivastava S; Dey P; Asapu S; Maiti T
    Nanotechnology; 2018 Dec; 29(50):505702. PubMed ID: 30211700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based RRAM devices for neural computing.
    R RT; Das RR; Reghuvaran C; James A
    Front Neurosci; 2023; 17():1253075. PubMed ID: 37886675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform self-rectifying resistive random-access memory based on an MXene-TiO
    Zang C; Li B; Sun Y; Feng S; Wang XZ; Wang X; Sun DM
    Nanoscale Adv; 2022 Nov; 4(23):5062-5069. PubMed ID: 36504734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.
    Lu Y; Lee JH; Chen IW
    Nanoscale; 2017 Aug; 9(34):12690-12697. PubMed ID: 28828416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in Solution-Based Metal Oxide Resistive Switching Devices.
    Carlos E; Branquinho R; Martins R; Kiazadeh A; Fortunato E
    Adv Mater; 2021 Feb; 33(7):e2004328. PubMed ID: 33314334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of device size and thickness of Al2O 3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application.
    Panja R; Roy S; Jana D; Maikap S
    Nanoscale Res Lett; 2014 Dec; 9(1):2410. PubMed ID: 26088986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable Multistate Data Storage with Low Power Consumption by Selective Oxidation of Pyramid-Structured Resistive Memory.
    Kim Y; Choi H; Park HS; Kang MS; Shin KY; Lee SS; Park JH
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38643-38650. PubMed ID: 29035500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.