These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37780121)

  • 1. Injury and performance related biomechanical differences between recreational and collegiate runners.
    Evans RJ; Moffit TJ; Mitchell PK; Pamukoff DN
    Front Sports Act Living; 2023; 5():1268292. PubMed ID: 37780121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association Between Knee- and Hip-Extensor Strength and Running-Related Injury Biomechanics in Collegiate Distance Runners.
    Moffit TJ; Montgomery MM; Lockie RG; Pamukoff DN
    J Athl Train; 2020 Dec; 55(12):1262-1269. PubMed ID: 33196827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet: The role of physical fatigue.
    Jafarnezhadgero A; Alavi-Mehr SM; Granacher U
    PLoS One; 2019; 14(5):e0216818. PubMed ID: 31086402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of negative joint work and vertical ground reaction force loading rates in Chi runners and rearfoot-striking runners.
    Goss DL; Gross MT
    J Orthop Sports Phys Ther; 2013 Oct; 43(10):685-92. PubMed ID: 24256170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prospective comparison of lower extremity kinematics and kinetics between injured and non-injured collegiate cross country runners.
    Dudley RI; Pamukoff DN; Lynn SK; Kersey RD; Noffal GJ
    Hum Mov Sci; 2017 Apr; 52():197-202. PubMed ID: 28237655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Running kinetics and femoral trochlea cartilage characteristics in recreational and collegiate distance runners.
    Mitchell PK; Moffit TJ; Montgomery MM; Pamukoff DN
    J Sports Sci; 2022 Jan; 40(1):89-95. PubMed ID: 34494939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ankle kinematics and ground reaction forces between prospectively injured and uninjured collegiate cross country runners.
    Kuhman DJ; Paquette MR; Peel SA; Melcher DA
    Hum Mov Sci; 2016 Jun; 47():9-15. PubMed ID: 26827155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of increases in knee and ankle joint moments following an increase in running speed from 8 to 12 to 16km·h(-1.).
    Petersen J; Nielsen RO; Rasmussen S; Sørensen H
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):959-64. PubMed ID: 25242200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Previous injuries and some training characteristics predict running-related injuries in recreational runners: a prospective cohort study.
    Hespanhol Junior LC; Pena Costa LO; Lopes AD
    J Physiother; 2013 Dec; 59(4):263-9. PubMed ID: 24287220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between Running Biomechanics, Hip Muscle Strength, and Running-Related Injury in Female Collegiate Cross-country Runners.
    Venable EN; Seynaeve LA; Beale ST; Gamez A; Domingo A; Rosenthal MD; Rauh MJ
    Int J Sports Phys Ther; 2022; 17(6):1053-1062. PubMed ID: 36237650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute Effects of Heel-to-Toe Drop and Speed on Running Biomechanics and Strike Pattern in Male Recreational Runners: Application of Statistical Nonparametric Mapping in Lower Limb Biomechanics.
    Yu P; He Y; Gu Y; Liu Y; Xuan R; Fernandez J
    Front Bioeng Biotechnol; 2021; 9():821530. PubMed ID: 35155415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preinjury Knee and Ankle Mechanics during Running Are Reduced among Collegiate Runners Who Develop Achilles Tendinopathy.
    Joachim MR; Kliethermes SA; Heiderscheit BC
    Med Sci Sports Exerc; 2024 Jan; 56(1):128-133. PubMed ID: 37703042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical Implications of Training Volume and Intensity in Aging Runners.
    Paquette MR; Devita P; Williams DSB
    Med Sci Sports Exerc; 2018 Mar; 50(3):510-515. PubMed ID: 29016393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of downhill slope on kinematics and kinetics of the lower extremity joints during running.
    Park SK; Jeon HM; Lam WK; Stefanyshyn D; Ryu J
    Gait Posture; 2019 Feb; 68():181-186. PubMed ID: 30497038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biomechanical characteristics of high-performance endurance running.
    Preece SJ; Bramah C; Mason D
    Eur J Sport Sci; 2019 Jul; 19(6):784-792. PubMed ID: 30556482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility, muscle strength and running biomechanical adaptations in older runners.
    Fukuchi RK; Stefanyshyn DJ; Stirling L; Duarte M; Ferber R
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):304-10. PubMed ID: 24380685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.
    Kuhman D; Melcher D; Paquette MR
    Eur J Sport Sci; 2016; 16(4):433-40. PubMed ID: 26371382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run.
    Jiang X; Zhou H; Quan W; Hu Q; Baker JS; Gu Y
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual Responses to a Barefoot Running Program: Insight Into Risk of Injury.
    Tam N; Tucker R; Astephen Wilson JL
    Am J Sports Med; 2016 Mar; 44(3):777-84. PubMed ID: 26744483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.