These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37780343)

  • 41. Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing.
    Wu C; Liu Z; Zhi L; Jiao B; Tian Y; Liu H; Hu H; Ma X; Pignitter M; Wang Q; Shi A
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High Internal-Phase Pickering Emulsions Stabilized by Xanthan Gum/Lysozyme Nanoparticles: Rheological and Microstructural Perspective.
    Xu W; Li Z; Sun H; Zheng S; Li H; Luo D; Li Y; Wang M; Wang Y
    Front Nutr; 2021; 8():744234. PubMed ID: 35071292
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of different hydrocolloids on the water migration, rheological and 3D printing characteristics of β-carotene loaded yam starch-based hydrogel.
    Feng L; Wu J; Cai L; Li M; Dai Z; Li D; Liu C; Zhang M
    Food Chem; 2022 Nov; 393():133422. PubMed ID: 35689924
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low oil Pickering emulsion gels stabilized by bacterial cellulose nanofiber/soybean protein isolate: An excellent fat replacer for ice cream.
    Gao Y; Lin D; Peng H; Zhang R; Zhang B; Yang X
    Int J Biol Macromol; 2023 Aug; 247():125623. PubMed ID: 37392915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of flavour oil high internal phase emulsions by casein/pectin hybrid particles: 3D printing performance.
    Bi AQ; Xu XB; Guo Y; Du M; Yu CP; Wu C
    Food Chem; 2022 Mar; 371():131349. PubMed ID: 34808768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel umami peptide from Hypsizygus marmoreus hydrolysate and molecular docking to the taste receptor T1R1/T1R3.
    Chang J; Li X; Liang Y; Feng T; Sun M; Song S; Yao L; Wang H; Hou F
    Food Chem; 2023 Feb; 401():134163. PubMed ID: 36099828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xanthan gum ink based on Lycium ruthenicum anthocyanin as an indicator of color change for monitoring freshness of cold fresh meat.
    Liu K; Song A; Li H; Li C
    Int J Biol Macromol; 2024 Jul; ():133788. PubMed ID: 38992540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles.
    Liu Q; Chang X; Shan Y; Fu F; Ding S
    J Sci Food Agric; 2021 Jul; 101(9):3630-3643. PubMed ID: 33275778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rheological properties of emulsion templated oleogels based on xanthan gum and different structuring agents.
    Espert M; Hernández MJ; Sanz T; Salvador A
    Curr Res Food Sci; 2022; 5():564-570. PubMed ID: 35340999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D printing based on meat materials: Challenges and opportunities.
    Dong H; Wang P; Yang Z; Xu X
    Curr Res Food Sci; 2023; 6():100423. PubMed ID: 36636723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of Soy Protein Acid Hydrolysate-Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions.
    Ćirin D; Pavlović N; Nikolić I; Krstonošić V
    Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Behavior of stabilizers in acidified solutions and their effect on the textural, rheological, and sensory properties of cream cheese.
    Brighenti M; Govindasamy-Lucey S; Jaeggi JJ; Johnson ME; Lucey JA
    J Dairy Sci; 2020 Mar; 103(3):2065-2076. PubMed ID: 31954572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating.
    Ghosh S; Yadav A; Rani S; Takkar S; Kulshreshtha R; Nandan B; Srivastava RK
    Langmuir; 2023 Feb; 39(5):1927-1946. PubMed ID: 36701663
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the nutritional value, umami taste, and volatile organic compounds of
    Zhao J; Lin J; Yan J; Zhang C; Wang T; Gan B
    Curr Res Food Sci; 2023; 7():100591. PubMed ID: 37731940
    [No Abstract]   [Full Text] [Related]  

  • 58. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin.
    Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F
    Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of anthocyanin-rich W
    Li J; Guo C; Cai S; Yi J; Zhou L
    Food Res Int; 2023 Jun; 168():112782. PubMed ID: 37120230
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of Material Requirements for 3D Gel Food Printing Using a Fused Deposition Modeling 3D Printer.
    In J; Jeong H; Song S; Min SC
    Foods; 2021 Sep; 10(10):. PubMed ID: 34681322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.