These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37780362)

  • 1. Wireless Electrochemical Reactor for Accelerated Exploratory Study of Electroorganic Synthesis.
    Chen J; Mo Y
    ACS Cent Sci; 2023 Sep; 9(9):1820-1826. PubMed ID: 37780362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroorganic Synthesis under Flow Conditions.
    Elsherbini M; Wirth T
    Acc Chem Res; 2019 Dec; 52(12):3287-3296. PubMed ID: 31693339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multifunctional Microfluidic Platform for High-Throughput Experimentation of Electroorganic Chemistry.
    Mo Y; Rughoobur G; Nambiar AMK; Zhang K; Jensen KF
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20890-20894. PubMed ID: 32767545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls.
    Röckl JL; Pollok D; Franke R; Waldvogel SR
    Acc Chem Res; 2020 Jan; 53(1):45-61. PubMed ID: 31850730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis.
    Shida N; Zhou Y; Inagi S
    Acc Chem Res; 2019 Sep; 52(9):2598-2608. PubMed ID: 31436076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions.
    Mo Y; Lu Z; Rughoobur G; Patil P; Gershenfeld N; Akinwande AI; Buchwald SL; Jensen KF
    Science; 2020 Jun; 368(6497):1352-1357. PubMed ID: 32554592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel-Catalyzed Chain-Walking Cross-Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction.
    Kumar GS; Peshkov A; Brzozowska A; Nikolaienko P; Zhu C; Rueping M
    Angew Chem Int Ed Engl; 2020 Apr; 59(16):6513-6519. PubMed ID: 32017340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Nickel-Catalyzed C(sp
    Ibrahim MYS; Cumming GR; Gonzalez de Vega R; Garcia-Losada P; de Frutos O; Kappe CO; Cantillo D
    J Am Chem Soc; 2023 Aug; 145(31):17023-17028. PubMed ID: 37494617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stirring-Free Scalable Electrosynthesis Enabled by Alternating Current.
    Bortnikov EO; Smith BS; Volochnyuk DM; Semenov SN
    Chemistry; 2023 Mar; 29(18):e202203825. PubMed ID: 36594259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Electrosynthesis of 5,5'-Azotetrazolate Energetic Materials Plus Energy-Efficient Hydrogen Production Using Ruthenium Single-Atom Catalysts.
    Li J; Zhang C; Zhang C; Ma H; Guo Z; Zhong C; Xu M; Wang X; Wang Y; Ma H; Qiu J
    Adv Mater; 2022 Aug; 34(32):e2203900. PubMed ID: 35724969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrosynthesis and Microanalysis in Thin Layer: An Electrochemical Pipette for Rapid Electrolysis and Mechanistic Study of Electrochemical Reactions.
    Punchihewa BT; Minda V; Gutheil WG; Rafiee M
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202312048. PubMed ID: 37669353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis.
    Zhang W; Hong N; Song L; Fu N
    Chem Rec; 2021 Sep; 21(9):2574-2584. PubMed ID: 33835697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Paired Electrosynthesis.
    Marken F; Cresswell AJ; Bull SD
    Chem Rec; 2021 Sep; 21(9):2585-2600. PubMed ID: 33834595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrosynthesis in Laminar Flow Using a Flow Microreactor.
    Shida N; Nakamura Y; Atobe M
    Chem Rec; 2021 Sep; 21(9):2164-2177. PubMed ID: 33734573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel electrosynthesis of 1,2-diamines.
    Siu T; Li W; Yudin AK
    J Comb Chem; 2001; 3(6):554-8. PubMed ID: 11703151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Construction of functional electrode interface for electroorganic synthesis].
    Kashiwagi Y
    Yakugaku Zasshi; 2007 Jul; 127(7):1047-57. PubMed ID: 17603263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide.
    LaBelle EV; Marshall CW; May HD
    Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells.
    Gajda I; You J; Mendis BA; Greenman J; Ieropoulos IA
    iScience; 2021 Aug; 24(8):102805. PubMed ID: 34471855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biorefinery for heterogeneous organic waste using microbial electrochemical technology.
    Desmond-Le Quéméner E; Bridier A; Tian JH; Madigou C; Bureau C; Qi Y; Bouchez T
    Bioresour Technol; 2019 Nov; 292():121943. PubMed ID: 31421593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Electrolysis for Green Molecular Transformations of Organic Halides Catalyzed by B
    Shimakoshi H; Hisaeda Y
    Chem Rec; 2021 Sep; 21(9):2080-2094. PubMed ID: 34075694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.